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Abstract
Stacked denoising autoencoders (SDAs) have
been successfully used to learn new represen-
tations for domain adaptation. Recently, they
have attained record accuracy on standard bench-
mark tasks of sentiment analysis across differ-
ent text domains. SDAs learn robust data repre-
sentations by reconstruction, recovering original
features from data that are artificially corrupted
with noise. In this paper, we propose marginal-
ized SDA (mSDA) that addresses two crucial lim-
itations of SDAs: high computational cost and
lack of scalability to high-dimensional features.
In contrast to SDAs, our approach of mSDA
marginalizes noise and thus does not require
stochastic gradient descent or other optimization
algorithms to learn parameters — in fact, they are
computed in closed-form. Consequently, mSDA,
which can be implemented in only 20 lines of
MATLABTM, significantly speeds up SDAs by
two orders of magnitude. Furthermore, the rep-
resentations learnt by mSDA are as effective as
the traditional SDAs, attaining almost identical
accuracies in benchmark tasks.

1. Introduction
Domain adaptation (Ben-David et al., 2009; Huang et al.,
2007; Weinberger et al., 2009; Xue et al., 2008) aims to
generalize a classifier that is trained on a source domain, for
which typically plenty of training data is available, to a tar-
get domain, for which data is scarce. Cross-domain gener-
alization is important in many application areas of machine
learning, where such an imbalance of training data may oc-
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cur. Examples are computational biology (Liu et al., 2008),
natural language processing (Daume III, 2007; McClosky
et al., 2006) and computer vision (Saenko et al., 2010).

Data in the source and the target are often distributed differ-
ently. This presents a major obstacle in adapting predictive
models. Recent work has investigated several techniques
for alleviating the difference: instance reweighting (Huang
et al., 2007; Mansour et al., 2009), sub-sampling from both
domains (Chen et al., 2011b) and learning joint target and
source feature representations (Blitzer et al., 2006; Glorot
et al., 2011; Xue et al., 2008).

Recently, Glorot et al. (2011) proposed a new approach that
falls into the third category. The authors propose to learn
robust feature representations with stacked denoising au-
toencoders (SDA) (Vincent et al., 2008). Denoising autoen-
coders are one-layer neural networks that are optimized to
reconstruct input data from partial and random corruption.
These denoisers can be stacked into deep learning archi-
tectures. The outputs of their intermediate layers are then
used as input features for SVMs (Lee et al., 2009). Glorot
et al. (2011) demonstrate that using SDA-learned features
in conjunction with linear SVM classifiers yields record
performance on the benchmark tasks of sentiment analysis
across different product domains (Blitzer et al., 2006).

Despite their remarkable and promising results, SDAs are
limited by their high computational cost. They are signif-
icantly slower to train than competing algorithms (Blitzer
et al., 2006; Chen et al., 2011a; Xue et al., 2008), primarily
because of their reliance on iterative and numerical opti-
mization to learn model parameters. The challenge is fur-
ther compounded by the dimensionality of the input data
and the need for computationally intensive model selection
procedures to tune hyperparameters. Consequently, even
a highly optimized implementation (Bergstra et al., 2010)
may require hours (even days) of training time.

In this paper, we address this challenge with a variant of
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SDA. The proposed method, which we refer to as marginal-
ized Stacked Denoising Autoencoder (mSDA), adopts the
greedy layer-by-layer training of SDAs. However, a cru-
cial difference is that we use linear denoisers as the basic
building blocks. The key observation is that, in this set-
ting, the random feature corruption can be marginalized
out. Conceptually, this is equivalent to training the mod-
els with an infinitely large number of corrupted input data.
Fitting models on such a scale would be impossible for the
conventional SDAs, which often rely on stochastic gradient
descent, and need to sweep through all the training data.

Our contributions are summarized as follows: i) we con-
tribute to deep learning by demonstrating that linear de-
noisers can be used as building blocks for learning feature
representations. ii) we show that linearity can significantly
simplify parameter estimation — our approach results in
closed-form solutions for the optimal parameters. iii) we
evaluate our approach rigorously on established domain
adaptation benchmark data sets and compare with several
competing state-of-the-art algorithms. We show that the
classification performance of mSDA matches that of SDA
across our benchmark data sets, while achieving tremen-
dous speedups during training time (reducing training from
up to 2 days for SDA to a few minutes with mSDA).

2. Notation and Background
We follow the setup of Glorot et al. (2011) and focus
on the problem of domain adaptation throughout this pa-
per. We assume that our data originates from two do-
mains, source S and target T . From the source domain
S, we sample data DS = {x1, . . . ,xns} ⊂ Rd with
known labels LS = {y1, . . . , yns}, whereas from the tar-
get domain we are only able to sample data without labels
DT = {xns+1, . . . xn} ⊂ Rd. We do not assume that both
domains use identical features and we pad all input vectors
with zeros to make both domains be of equal dimensional-
ity d. Our goal is to learn a classifier h∈H with the help of
the labeled set DS and the unlabeled set DT , to accurately
predict the labels of data from the target domain T . In prac-
tice (and as we show in section 5) it is straightforward to
also extend this framework to multiple target domains.

Stacked Denoising Autoencoder. Various forms of au-
toencoders have been developed in the deep learning lit-
erature (Rumelhart et al., 1986; Baldi & Hornik, 1989;
Kavukcuoglu et al., 2009; Lee et al., 2009; Vincent et al.,
2008; Rifai et al., 2011). In its simplest form, an autoen-
coder has two components, an encoder h(·) maps an input
x ∈ Rd to some hidden representation h(x) ∈ Rdh , and
a decoder g(·) maps this hidden representation back to a
reconstructed version of x, such that g(h(x))≈x. The pa-
rameters of the autoencoders are learned to minimize the
reconstruction error, measured by some loss `(x, g(h(x))).

Choices for the loss include squared error or Kullback-
Leibler divergence when the feature values are in [0, 1].

Denoising Autoencoders (DAs) incorporate a slight modi-
fication to this setup and corrupt the inputs before mapping
them into the hidden representation. They are trained to
reconstruct (or denoise) the original input x from its cor-
rupted version x̃ by minimizing `(x, g(h(x̃))). Typical
choices of corruption include additive isotropic Gaussian
noise or binary masking noise. In this work, as in Vin-
cent et al. (2008), we use the latter and set a fraction of the
features of each input to zero. This is a natural choice for
bag-of-word representations of texts, where typical class-
specific words can be missing due to the writing style of
the author or differences between train and test domains.

The stacked denoising autoencoder (SDA) of Vincent et al.
(2008) stacks several DAs together to create higher-level
representations, by feeding the hidden representation of the
tth DA as input into the (t + 1)th DA. The training is per-
formed greedily, layer by layer.

Feature Generation. Many researchers have seen autoen-
coders as a powerful tool for automatic discovery and ex-
traction of nonlinear features. For example, Lee et al.
(2009) demonstrate that the hidden representations com-
puted by either all or partial layers of a convolutional neural
network (CNN) make excellent features for classification
with SVMs. The pre-processing with a CNN improves the
generalization by increasing robustness against noise and
label-invariant transformations.

Glorot et al. (2011) successfully apply SDAs to extract fea-
tures for domain adaptation in document sentiment anal-
ysis. The authors train an SDA to reconstruct the input
vectors (ignoring the labels) on the union of the source and
target data. A classifier (e.g. a linear SVM) trained on the
resulting feature representation h(x) transfers significantly
better from source to target than one trained on x directly.
Similar to CNNs, SDAs also combine correlated input di-
mensions, as they reconstruct removed feature values from
uncorrupted features. It is shown that SDAs are able to
disentangle hidden factors which explain the variations in
the input data, and automatically group features in accor-
dance with their relatedness to these factors (Glorot et al.,
2011). This helps transfer across domains as these generic
concepts are invariant to domain-specific vocabularies.

As an intuitive example, imagine that we classify product
reviews according to their sentiments. The source data con-
sists of book reviews, the target of kitchen appliances. A
classifier trained on the original source never encounters
the bigram “energy efficient” during training and therefore
assigns zero weight to it. In the learned SDA represen-
tation, the bigram “energy efficient” would tend to recon-
struct, and be reconstructed by, co-occurring features, typ-
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ically of similar sentiment (e.g. “good” or “love”). Hence,
the source-trained classifier can assign weights even to fea-
tures that never occur in its original domain representation,
which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain
adaptation, they have several drawbacks: 1. Training with
(stochastic) gradient descent is slow and hard to paral-
lelize (although a dense-matrix GPU implementation ex-
ists (Bergstra et al., 2010) and an implementation based
on reconstruction sampling exists (Dauphin Y., 2011) for
sparse inputs); 2. There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch
size and network structure), which need to be set by cross
validation — this is particularly expensive as each individ-
ual run can take several hours; 3. The optimization is in-
herently non-convex and dependent on its initialization.

3. SDA with Marginalized Corruption
In this section we introduce a modified version of SDA,
which preserves its strong feature learning capabilities, and
alleviates the concerns mentioned above through speedups
of several orders of magnitudes, fewer meta-parameters,
faster model-selection and layer-wise convexity.

3.1. Single-layer Denoiser

The basic building block of our framework is a one-layer
denoising autoencoder. We take the inputs x1, . . . ,xn from
D=DS∪DT and corrupt them by random feature removal
— each feature is set to 0 with probability p≥0. Let us
denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct
the corrupted inputs with a single mapping W : Rd→Rd,
that minimizes the squared reconstruction loss

1

2n

n∑
i=1

‖xi −Wx̃i‖2. (1)

To simplify notation, we assume that a constant feature is
added to the input, xi = [xi; 1], and an appropriate bias
is incorporated within the mapping W = [W,b]. The
constant feature is never corrupted.

The solution to (1) depends on which features of each input
are randomly corrupted. To lower the variance, we perform
multiple passes over the training set, each time with dif-
ferent corruption. We solve for the W that minimizes the
overall squared loss

Lsq(W) =
1

2mn

m∑
j=1

n∑
i=1

‖xi −Wx̃i,j‖2, (2)

where x̃i,j represents the jth corrupted version of the orig-
inal input xi.

Algorithm 1 mDA in MATLABTM.
function [W,h]=mDA(X,p);
X=[X;ones(1,size(X,2))];
d=size(X,1);
q=[ones(d-1,1).*(1-p); 1];
S=X*X’;
Q=S.*(q*q’);
Q(1:d+1:end)=q.*diag(S);
P=S.*repmat(q’,d,1);
W=P(1:end-1,:)/(Q+1e-5*eye(d));
h=tanh(W*X);

Let us define the design matrix X= [x1, . . . ,xn] ∈Rd×n
and its m-times repeated version as X= [X, . . . ,X]. Fur-
ther, we denote the corrupted version of X as X̃. With this
notation, the loss in eq. (1) reduces to

Lsq(W)=
1

2nm
tr
[(

X−WX̃
)> (

X−WX̃
)]
. (3)

The solution to (3) can be expressed as the well-known
closed-form solution for ordinary least squares (Bishop,
2006):

W = PQ−1 with Q = X̃X̃> and P = XX̃>. (4)

(In practice this can be computed as a system of linear
equations, without the costly matrix inversion.)

3.2. Marginalized Denoising Autoencoder

The largerm is, the more corruptions we average over. Ide-
ally we would like m → ∞, effectively using infinitely
many copies of noisy data to compute the denoising trans-
formation W.

By the weak law of large numbers, the matrices P and Q,
as defined in (3), converge to their expected values as m
becomes very large. If we are interested in the limit case,
where m→∞, we can derive the expectations of Q and P,
and express the corresponding mapping W as

W = E[P]E[Q]−1. (5)

In the remainder of this section, we compute the expecta-
tions of these two matrices. For now, let us focus on

E[Q] =

n∑
i=1

E
[
x̃ix̃
>
i

]
. (6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if

the two features α and β both “survived” the corruption,
which happens with probability (1 − p)2. For the diago-
nal entries, this holds with probability 1 − p. Let us de-
fine a vector q = [1 − p, . . . , 1 − p, 1]> ∈ Rd+1, where
qα represents the probability of a feature α “surviving” the
corruption. As the constant feature is never corrupted, we
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have qd+1=1. If we further define the scatter matrix of the
original uncorrupted input as S = XX>, we can express
the expectation of the matrix Q as

E[Q]α,β =

{
Sαβqαqβ if α 6= β
Sαβqα if α = β

. (7)

Similarly, we obtain the expectation of P in closed-form as
E[P]αβ = Sαβqβ .

With the help of these expected matrices, we can com-
pute the reconstructive mapping W directly in closed-form
without ever explicitly constructing a single corrupted in-
put x̃i. We refer to this algorithm as marginalized De-
noising Autoencoder (mDA). Algorithm 1 shows a 10-line
MATLABTM implementation. The mDA has several ad-
vantages over traditional denoisers: 1. It requires only
a single sweep through the data to compute the matrices
E[Q], E[P]; 2. Training is convex and a globally optimal
solution is guaranteed; 3. The optimization is performed in
non-iterative closed-form.

3.3. Nonlinear feature generation and stacking

Arguably two of the key contributors to the success of the
SDA are its nonlinearity and the stacking of multiple lay-
ers of denoising autoencoders to create a “deep” learning
architecture. Our framework has the same capabilities.

In SDAs, the nonlinearity is injected through the nonlin-
ear encoder function h(·), which is learned together with
the reconstruction weights W. Such an approach makes
the training procedure highly non-convex and requires it-
erative procedures to learn the model parameters. To pre-
serve the closed-form solution from the linear mapping in
section 3.2 we insert nonlinearity into our learned repre-
sentation after the weights W are computed. A nonlinear
squashing-function is applied on the output of each mDA.
Several choices are possible, including sigmoid, hyperbolic
tangent, tanh(), or the rectifier function (Nair & Hinton,
2010). Throughout this work, we use the tanh() function.

Inspired by the layer-wise stacking of SDA, we stack sev-
eral mDA layers by feeding the output of the (t−1)th mDA
(after the squashing function) as the input into the tth mDA.
Let us denote the output of the tth mDA as ht and the orig-
inal input as h0 = x. The training is performed greedily
layer by layer: each map Wt is learned (in closed-form)
to reconstruct the previous mDA output ht−1 from all pos-
sible corruptions and the output of the tth layer becomes
ht = tanh(Wtht−1). In our experiments, we found that
even without the nonlinear squashing function, stacking
still improves the performance. However, the nonlinearity
improves over the linear stacking significantly. We refer to
the stacked denoising algorithm as marginalized Stacked
Denoising Autoencoder (mSDA). Algorithm 2 shows a 8-
lines MATLABTM implementation of mSDA.

Algorithm 2 mSDA in MATLABTM.
function [Ws,hs]=mSDA(X,p,l);
[d,n]=size(X);
Ws=zeros(d,d+1,l);
hs=zeros(d,n,l+1);
hs(:,:,1)=X;
for t=1:l
[Ws(:,:,t), hs(:,:,t+1)]=mDA(hs(:,:,t),p);

end;

3.4. mSDA for Domain Adaptation

We apply mSDA to domain adaptation by first learning fea-
tures in an unsupervised fashion on the union of the source
and target data sets. One observation reported in (Glo-
rot et al., 2011) is that if multiple domains are available,
sharing the unsupervised pre-training of SDA across all do-
mains is beneficial compared to pre-training on the source
and target only. We observe a similar trend with our ap-
proach. The results reported in section 5 are based on fea-
tures learned on data from all available domains. Once a
mSDA is trained, the output of all layers, after squashing,
tanh(Wtht−1), combined with the original features h0,
are concatenated and form the new representation. All in-
puts are transformed into the new feature space. A linear
Support Vector Machine (SVM) (Chang & Lin, 2011) is
then trained on the transformed source inputs and tested
on the target domain. There are two meta-parameters in
mSDA: the corruption probability p and the number of lay-
ers l. In our experiments, both are set with 5-fold cross
validation on the labeled data from the source domain. As
the mSDA training is almost instantaneous, this grid search
is almost entirely dominated by the SVM training time.

4. Extension for High Dimensional Data
Many data sets (e.g. bag-of-words text documents) are nat-
urally high dimensional. As the dimensionality increases,
hill-climbing approaches used in SDAs can become pro-
hibitively expensive. In practice, a work-around is to trun-
cate the input data to the r�dmost common features (Glo-
rot et al., 2011). Unfortunately, this prevents SDAs from
utilizing important information found in rarer features. (As
we show in section 5, including these rarer features leads
to significantly better results.) High dimensionality also
poses a challenge to mSDA, as the system of linear equa-
tions in (5) of complexity O(d3) becomes too costly. In
this section we describe how to approximate this calcula-
tion with a simple division into d

r sub-problems of O(r3).

We combine the concept of “pivot features” from Blitzer
et al. (2006) and the use of most-frequent features
from Glorot et al. (2011). Instead of learning a single map-
ping W ∈ Rd×(d+1) to reconstruct all corrupted features,
we learn multiple mappings but only reconstruct the r�d
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Baseline
PCA
SCL (Blitzer et. al., 2007)
CODA (Chen et. al., 2011)
SDA (Glorot et. al., 2011)
mSDA (l=5)

Figure 1. Detailed comparison across all twelve domain adaptation task in the small Amazon benchmark data. The reviews are from
the domains Books, Kitchen appliances, Electronics, DVDs. With an exception of B → E and D→ E, mSDA5 leads to the lowest
transfer-loss.

most frequent features (here, r = 5000). For an input xi
we denote the shortened r-dimensional vector of only the r
most-frequent features as zi ∈Rr. We perform this recon-
struction with S random non-overlapping sub-sets of input
features. Without loss of generality, we assume that the
feature-dimensions in the input space are in random order

and divide-up the input vectors as xi =
[
x1
i
>
, . . . ,xSi

>
]>

.
For each one of these sub-spaces we learn an independent
mapping Ws which minimizes

Ls(Ws) =
1

2n

n∑
i=1

S∑
s=1

‖zi −Wsx̃si‖2. (8)

Each mapping Ws can be solved in closed-form as in (5),
following the method described in section 3.2. We define
the output of the first layer in the resulting mSDA as the
average of all reconstructions,

h1 = tanh

(
1

S

S∑
s=1

Wsxs

)
. (9)

Once the first layer, of dimension r� d, is built, we can
stack multiple layers on top of it using the regular mSDA as
described in section 3.3 and Algorithm 2. It is worth point-
ing out that, although features might be separated in differ-
ent sub-sets within the first layer, they can still be combined
in subsequent layers of the mSDA.

5. Results
We evaluate mSDA on the Amazon reviews benchmark data
sets (Blitzer et al., 2006) together with several other algo-
rithms for representation learning and domain adaptation.
The dataset contains more than 340, 000 reviews from 25
different types of products from Amazon.com. For simplic-
ity (and comparability), we follow the convention of (Chen
et al., 2011b; Glorot et al., 2011) and only consider the
binary classification problem whether a review is positive

(higher than 3 stars) or negative (3 stars or lower). As
mSDA and SDA focus on feature learning, we use the raw
bag-of-words (bow) unigram/bigram features as their input.
To be fair to other algorithms that we compare to, we also
pre-process with tf-idf (Salton & Buckley, 1988) and use
the transformed feature vectors as their input if that leads
to better results. Finally, we remove five domains which
contain less than 1, 000 reviews.

Different domains in the complete set vary substantially in
terms of number of instances and class distribution. Some
domains (books and music) have hundreds of thousands
of reviews, while others (food and outdoor) have only a
few hundred. There are a total of 380 possible transfer
tasks (e.g. Apparel → Baby). The proportion of nega-
tive examples in different domains also differs greatly. To
counter the effect of class- and size-imbalance, a more con-
trolled smaller dataset was created by Blitzer et al. (2006),
which contains reviews of four types of products: books,
DVDs, electronics, and kitchen appliances. Here, each do-
main consists of 2, 000 labeled inputs and approximately
4, 000 unlabeled ones (varying slightly between domains)
and the two classes are exactly balanced. Almost all prior
work provides results only on this smaller set with its more
manageable twelve transfer tasks. We focus most of our
comparative analysis on this smaller set but also provide
results on the entire data for completeness.

Methods. As baseline, we train a linear SVM on the
raw bag-of-words representation of the labeled source and
test it on target. We also include the results of the same
setup with dense features obtained by projecting the entire
data set (labeled and unlabeled source+target) onto a low-
dimensional sub-space with PCA (we refer to this setting
as PCA). Besides these two baselines, we evaluate the effi-
cacy of a linear SVM trained on features learned by mSDA
and two alternative feature learning algorithms, Structural
Correspondence Learning (SCL) (Blitzer et al., 2006) and
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Figure 2. Transfer ratio and training times on the small (left) and full (right) Amazon Benchmark data. Results are averaged across the
twelve and 380 domain adaptation tasks in the respective data sets (5, 000 features). The graphs compare the results of mSDA with
baseline, SDA and, on the small data set, with CODA, SCL and PCA. The speedups of mSDA over SDA, with similar transfer ratio, is
180× on the small task and 230× on the complete benchmark.

1-layer1 SDA (Glorot et al., 2011). Finally, we also com-
pare against CODA (Chen et al., 2011b), a state-of-the-art
domain adaptation algorithm which is based on sample-
and feature-selection, applied to tf-idf features. For CODA,
SDA and SCL we use implementations provided by the au-
thors. All hyper-parameters are set by 5-fold cross valida-
tion on the source training set2.

Metrics. Following Glorot et al. (2011), we evaluate our
results with the transfer error e(S, T ) and the in-domain
error e(T, T ). The transfer error e(S, T ) denotes the clas-
sification error of a classifier trained on the labeled source
data and tested on the unlabeled target data. The in-domain
error e(T, T ) denotes the classification error of a classifier
that is trained on the labeled target data and tested on the
unlabeled target data. Similar to Glorot et al. (2011) we
measure the performance of a domain adaptation algorithm
in terms of the transfer loss, defined as e(S, T )−eb(T, T ),
where eb(T, T ) defines the in-domain error of the baseline.
In other words, the transfer loss measures how much higher
the error of an adapted classifier is in comparison to a lin-
ear SVM that is trained on actual labeled target bow data.

The various domain-adaptation tasks vary substantially in
difficulty, which is why we do not average the trans-
fer losses (which would be dominated by a few most
difficult tasks). Instead, we average the transfer ratio,
e(S, T )/eb(T, T ), the ratio of the transfer error over the
in-domain error. As with the transfer loss, a lower transfer
ratio implies better domain adaptation.

1We were only able to obtain the 1-layer implementation from
the authors. Anecdotally, multiple-layer SDA only leads to small
improvements on this benchmark set but increases the training
time drastically.

2We keep the default values of some of the parameters in SCL,
e.g. the number of stop-words removed and stemming parameters
— as they were already tuned for this benchmark set by the au-
thors.

For timing purposes, we ignore the time of the SVM train-
ing and only report the mSDA or SDA training time. As
both algorithms are unsupervised, we do not re-train for
different transfer tasks within a benchmark set — instead
we learn one representation on the union of all domains.
CODA (Chen et al., 2011a) does not take advantage of data
besides source and target and we report the average train-
ing time per transfer task.3 All experiments were conducted
on an off-the-shelf desktop with dual 6-core Intel i7 CPUs
clocked at 2.66Ghz.

5.1. Comparison with Related Work

In the first set of experiments, we use the setting from (Glo-
rot et al., 2011) on the small Amazon benchmark set. The
input data is reduced to only the 5, 000 most frequent terms
of unigrams and bigrams as features.

Comparison per task. Figure 1 presents a detailed com-
parison of the transfer loss across the twelve domain adap-
tation tasks using the various methods mentioned. A linear
SVM trained on the features generated by SDA and mSDA
clearly outperform all the other methods. For several tasks,
the transfer loss goes to negative — in other words, a SVM
trained on the transformed source data has higher accuracy
than one trained on the original target data. This is a strong
indication that the learned new representation bridges the
gap between domains. It is worth pointing out that in ten
out of the twelve tasks mSDA achieves a lower transfer-loss
than SDA.

Timing. Figure 2 (left) depicts the transfer ratio as a func-
tion of training time required for different algorithms, av-
eraged over 12 tasks. The time is plotted in log scale. We
can make three observations: 1. SDA outperforms all other
related work in terms of transfer-ratio, but is also the slow-

3In CODA, the feature splitting and classifier training are in-
separable and we necessarily include both in our timing.
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Figure 3. Left: Transfer ratio as a function of the input dimensionality (terms are picked in decreasing order of their frequency). Right:
Besides domain adaptation, mSDA also helps in domain recognition tasks.

est to train (more than 5 hours of training time). 2. SCL
and PCA are relatively fast, but their features cannot com-
pete in terms of transfer performance. 3. The training time
of mSDA is two orders of magnitude faster that of SDAs
(180× speedup), with comparable transfer ratio. Training
one layer of mDA on all 27, 677 documents from the small
set requires less than 25 seconds. A 5-layer mSDA requires
less than 2 minutes to train, and the resulting feature trans-
formation achieves slightly better transfer ratio than SDAs.

Large scale results. To demonstrate the capabilities of
mSDA to scale to large data sets, we also evaluate it on the
complete set with n = 340, 000 reviews from 20 domains
and a total of 380 domain adaptation tasks (see right plot
in Figure 2). We compare mSDA to SDA (1-layer). The
large set is more heterogenous in terms of the number of
domains, domain size and class distribution than the small
set and both the transfer error and transfer ratio are aver-
aged across 380 tasks. Nonetheless, a similar trend can be
observed. The transfer ratio reported in Figure 2 (right) cor-
responds to averaged transfer errors of (baseline) 13.93%,
( one-layer SDA) 10.50%, (mSDA, l=1) 11.50%, (mSDA,
l = 3) 10.47%, (mSDA, l = 5) 10.33%. With only one
layer, mSDA performs a little worse than SDA but reduces
the training time from over two days to about five minutes
(700× speedup). With three layers, mSDA matches the
transfer-error and transfer-ratio of SDA and still only re-
quires 14 minutes of training time (230× speedup).

5.2. Further Analysis

In addition to comparison with prior work, we also analyze
various other aspects of mSDA.

Low-frequency features. Prior work often limits the in-
put data to the most frequent features (Glorot et al., 2011).
We use the modification from section 4 to scale mSDA
(5-layers) up to high dimensions and include less-frequent
uni-grams and bi-grams in the input (small Amazon set).
In the case of SDA we make the first layer a dimension-
ality reducing transformation from d dimensions to 5000.

The left plot in Figure 3 shows the performance of mSDA
and SDA as the input dimensionality increases (words are
picked in decreasing order of their frequency). The trans-
fer ratio is computed relative to the baseline with d=5000
feature. Clearly, both algorithms benefit from having more
features up to 30, 000. mSDA matches the transfer-ratio
of SDA consistently and, as the dimensionality increases,
gains even higher speed-up. With 30, 000 input features,
SDA requires over one day and mSDA only 3 minutes
(458× speedup).

Transfer distance. Ben-David et al. (2007) suggest the
Proxy-A-distance (PAD) as a measure of how different two
domains are from each other. The metric is defined as
2(1 − 2ε), where ε is the generalization error of a classi-
fier (a linear SVM in our case) trained on the binary classi-
fication problem to distinguish inputs between the two do-
mains. The right plot in Figure 3 shows the PAD before and
after mSDA is applied. Surprisingly, the distance increases
in the new representation — i.e. distinguishing between
two domains becomes easier with the mSDA features. We
explain this effect through the fact that mSDA is unsuper-
vised and learns a generally better representation for the
input data. This helps both tasks, distinguishing between
domains and sentiment analysis (e.g. in the electronic-
domain mSDA might interpolate the feature “dvd player”
from “blue ray”, both are not particularly relevant for sen-
timent analysis but might help distinguish the review from
the book domain.). Glorot et al. (2011) observe a similar
effect with the representations learned with SDA.

5.3. General Trends

In summary, we observe a few general trends across all ex-
periments: 1. With one layer, mSDA is up to three orders
of magnitudes faster but slightly less expressive than the
original SDA. This can be attributed to the fact that mSDA
has no hidden layer. 2. There is a clear trend that addi-
tional “deep” layers improve the results significantly (here,
up to five layers). With additional layers, the mSDA fea-
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tures reach (and surpass) the accuracy of 1-layer SDA and
still obtain a several hundred-fold speedup. 3. The mSDA
features help diverse classification tasks, domain classifi-
cation and sentiment analysis, and can be trained very effi-
ciently on high-dimensional data.

6. Discussion and Conclusion
Although mSDA first and foremost marginalizes out the
corruption in SDA training, the two algorithms differ in
several profound ways: First, the mDA layers do not have
hidden nodes — this allows a closed-form solution with
substantial speed-ups but might entail limitations that still
need to be investigated. Second, mSDA only has two free
meta-parameters, controlling the amount of noise as well
as the number of layers to be stacked, which greatly sim-
plifies the model selection. Finally, leveraging on the an-
alytic tractability of linear regression, the parameters of
an mDA are trained to optimally denoise all possible cor-
rupted training inputs — arguably “infinitely many”. This
is practically infeasible for SDAs.

We hope that our work on mSDA will inspire future
research on efficient training of SDA, beyond domain
adaptation, and impact a variety of research problems.
The fast training time, the capability to scale to large
and high-dimensional data and implementation simplicity
make mSDA a promising method with appeal to a large au-
dience within and beyond machine learning.
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