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Abstract. The Minimax Probability Machine (MPM) is an elegant ma-
chine learning algorithm for inductive learning. It learns a classifier that
minimizes an upper bound on its own generalization error. In this pa-
per, we extend its celebrated inductive formulation to an equally elegant
transductive learning algorithm. In the transductive setting, the label
assignment of a test set is already optimized during training. This opti-
mization problem is an intractable mixed-integer programming. Thus, we
provide an efficient label-switching approach to solve it approximately.
The resulting method scales naturally to large data sets and is very effi-
cient to run. In comparison with nine competitive algorithms on eleven
data sets, we show that the proposed Transductive MPM (TMPM) al-
most outperforms all the other algorithms in both accuracy and speed.

Keywords: minimax probability machine, transductive learning, semi-
supervised learning.

1 Introduction

The Minimax Probability Machine (MPM) was originally introduced by Lanck-
riet et al. and provides an elegant approach to inductive supervised learning. It
trains a discriminant classifier that directly minimizes an upper bound on its
own generalization error. In particular, it first estimates the first and second
moments of the conditional class distributions empirically. Building upon the
celebrated work in [8] and [2], it then trains a classifier to minimize the worst
case (maximal) probability of a test point falling on ”the wrong side” of the
decision hyperplane.

In this paper we revisit the MPM and extend it to an equally elegant trans-
ductive formulation. In transductive learning (TL) [20], the unlabeled test data
is available during training and the label assignment is optimized directly while
the classifier is learned. In classification settings, this results in an integer assign-
ment problem, which is inherently NP-hard [11]. Nevertheless, many approaches
have been proposed, typically based on clever heuristics including spectral graph
partitioning [9], support vector machines [10], and others [23].
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The MPM framework can incorporate the transductive label assignment prob-
lem much more naturally and efficiently than other learning paradigms, e.g.,
Support Vector Machines (SVM) [16]. First, MPM has the attractive property
that its learning complexity is independent of the size of training set provided
the first and second moments of the conditional class distributions are given,
enabling it handle large amount of training samples effortlessly. Second, the two
steps of MPM, first estimating the conditional data distribution and then opti-
mizing the hyperplane, give rise to an EM-like transductive algorithm [4] that
is both highly efficient and accurate. As a first step, the test-label assignments
are optimized (by label switching) to give rise to conditional probability dis-
tributions that maximize the worst-case separation probability with the current
hyperplane. As a second step, the hyperplane is retrained based on the updated
label assignments.

We first formulate the Transductive Minimax Probability Machine (TMPM)
as an exact mixed-integer prgramming and then formalize our approximate so-
lution. We show that the proposed algorithm provably increases the problem
objective with every update and converges in a finite number of iterations. As
both steps of TMPM are highly efficient, the algorithm scales to large data
sets effortlessly. Similar to Transductive SVM (TSVM) [9], TMPM is particu-
larly well suited for data sets with inherent cluster structure. In the presence
of underlying manifold structure, Laplacian regularization [1] is often used for
semi-supervised learning. We show that TMPM can be further extended to also
incorporate such manifold smoothing if it is supported by the data set.

Finally, we evaluate the efficacy of TMPM on an extensive set of real world
classification tasks. We compare against nine state-of-the-art learning algorithms
and show that TMPM clearly outperforms most of them in speed and accuracy
with an impressive consistency across learning tasks.

2 Related Works

Several extensions to the MPM [13] have been explored before, in particular for
handling uncertain or missing data [3,17]. These works can be seen as dealing
with missing information in the input space, while our work is dealing with miss-
ing information in the label space. The recent work [12] adopted the minimax
probability approach for multiple instance learning. Huang et al. [7] proposes a
semi-supervised learning method by combining k-nearest neighbors with a robust
extension of MPM. Prior work by Nigam el al. [14] utilizes similar structure with
the EM algorithm. The low density separation (LDS) semi-supervised algorithm
proposed in [6] builds a fully connected graph kernel and trains a transduc-
tive SVM [9] to learn a hyperplane that traverses a low density region between
clusters.

Perhaps most similar to our work is the Transductive SVM (TSVM) [9], which
also iterates between label switching and classifier re-training. In contrast to
TSVM, our algorithm is based on MPM, which greatly reduces the computa-
tional cost of re-training. Moreover, we further improve the efficiency drasti-
cally by adopting the idea of switching multiple class assignments at a time
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as the large-scale extension of TSVM [18]. Therefore, the proposed algorithm
only re-trains MPM very few times. Additionally, TMPM provably optimizes
a well-defined global objective function with each iteration, without heuristi-
cally adjusting it (gradually up-weight unlabeled data) during training as in
TSVM [9].

3 Minimax Probability Machine

Consider the binary classification case, where we are given labeled training inputs
{x1, . . . ,xm} ∈Rd and their corresponding labels {y1, . . . , ym} ∈ {−1,+1}. We
are also provided with unlabeled test inputs {xm+1, . . . ,xn}∈Rd.

Let us denote the two class-conditional data distributions as P(x+|y = +1)
and P(x−|y = −1), respectively. MPM aims to learn a hyperplane {w, b} that
separates positive and negative classes with maximum probability. Since the true
class-conditional distributions P are usually unknown, Lanckriet et al. [13] pro-
pose to maximize the worst case probability p that the two classes are separated:

max
p,w �=0,b

p

s.t. inf
P∈S+

P(w�x+ + b ≥ 0|+ 1) ≥ p,

inf
P∈S−

P(w�x− + b ≤ 0| − 1) ≥ p.

(1)

To make this optimization tracktable, the infimums are constrained to sets of
distributions S+,S− that match the empirical first and second order moments of
the training data. Let us denote these estimated moments as mean μ̂+ and co-
variance Σ̂+ for the positive class and μ̂−, Σ̂− for the negative class respectively.
Then S+ is defined as:

S+=
{
P : E[x] = μ̂+ ∧ E[(x− μ+)(x − μ+)

�] = Σ̂+

}
.

Based on the prior work in [8] and [2], Lanckriet et al. [13] show that with
this restriction, the separating probability constraints in (1) can be converted
into tractable inequality constraints:

w�μ̂+ + b ≥ κ

√
wΣ̂+w, (2)

where κ =
√
p/(1− p) and the inequality for the negative class is similarly

defined. The above inequality can be proven with the multivariate Chebyshev
inequality, and we refer readers to [13] for details.

With inequality (2), the optimization in (1) can be converted into the following
unconstrained optimization problem [13], which accesses the data only through
the empirical estimates of the first and second order moments,

max
w

κ :=
w�(μ̂+ − μ̂−)√

w�(Σ̂++Σδ+)w+
√
w�(Σ̂−+Σδ−)w

. (3)
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Here, Σδ+ , Σδ− are regularization terms, often set to σ2I for some small σ, or
proportional to the diagonal elements of the covariance matrix of all training
inputs.

Let w∗ denote the optimal solution to (3), then the optimal bias term can be

computed as b∗ = −w∗�μ̂+ + κ∗
√
w∗�(Σ̂++Σδ+)w

∗. The optimal separation

probability corresponds to p∗ = κ∗2/(1 + κ∗2). The optimization (3) can be
solved by an iterative least-squares method [13] with a worst-case computational
complexity of O(d3). If the cost of estimating μ+, μ−, Σ+ and Σ− is taken into
account, then the total complexity of this approach is O(d3 +md2).

4 Transductive Minimax Probability Machine

In this section, we introduce our transductive extension to MPM, which we refer
to as TMPM. In transductive learning [20], the unlabeled test data is avail-
able during training and it is allowed to assign the labels directly as part of
the learning procedure. We first formalize the TMPM optimization problem,
which is NP-hard. We then introduce an efficient algorithm to find an approxi-
mate solution. Finally, we prove that our algorithm monotonically increases the
objective function value and converges in a finite number of steps.

4.1 Setup

Let ŷ = [ŷl; ŷu] ∈ {−1,+1}n denote the class assignment vector for both labeled
(ŷl) and unlabeled (ŷu) inputs (the class assignments for labeled inputs are fixed,
and thus ŷl = y). We also let D+,D− denote the sets of positive and negative
labeled test inputs respectively, given the current class assignment vector ŷ.

Transductive estimation of μ and Σ. A key aspect of TMPM is to
incorporate test inputs into the empirical estimation of the mean (μ̂+, μ̂−) and
covariance Σ̂+, Σ̂− of the two class distributions. Since they depend on the class
assignment, we write them as functions of ŷ:

μ̂+(ŷ) =
1

|D+|
∑
i

xi, ∀xi ∈ D+

Σ̂+(ŷ) =
1

|D+|
∑
i

(xi − μ̂+)(xi − μ̂+)
�, ∀xi ∈ D+

The corresponding μ̂−(ŷ) and Σ̂−(ŷ) can be computed in a similar fashion.

Mixed-Integer Optimization. Our goal is to find the best class assignment ŷu

for the test inputs and the corresponding MPM classifier w simultaneously. The
joint search over w ∈ Rd and ŷu ∈ {−1,+1}m−n leads to the following mixed-
integer optimization problem:
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max
w,ŷu

κ :=
w�

(
μ̂+(ŷ)− μ̂−(ŷ)

)
√
w�(Σ̂+(ŷ)+Σδ+

)
w+

√
w�(Σ̂−(ŷ)+Σδ−

)
w
,

s.t.
1

n

n∑
i=1

ŷi = 2r − 1 (4)

where ŷi denotes the class assignment for input xi. The equally constraint en-
forces the fraction of positive test inputs to match r(0 < r < 1), which can be
set according to prior knowledge or estimated from training labels.

Note that in the above formulation, the class conditioned means and con-
variances are estimated from both labeled and unlabeled data. Therefore, the
empirical moments are functions of ŷu, which are also optimization variables.

4.2 The TMPM Algorithm

The optimization problem (4) is computationally intractable to solve globally
when the number of input n data is large.

Inspired by Transductive SVM [9], we adopt the strategy of label-switching,
and approximate (4) with a iterative greedy procedure. Specifically, we alter-
nately optimize the class assignment ŷu and MPM classifier w. First, we keep
the MPM classifier w fixed and optimize the class assignment ŷ through la-
bel switching, and then we fix the class assignment, and re-optimize the MPM
classifier w.

Initialization. In order to initialize the labels ŷu, we first train a regular MPM
(3) on the labeled training data and then use the resulting classifier to obtain
predictions on the test data. To ensure the label assignment is within the feasible
set of (4), i.e., its class ratio matches r, we assign the r(n−m) test inputs with
highest prediction values to class +1, and the rest to class −1.

Classifier Re-optimization. Once the test labels are assigned, we re-train
the MPM parameters w, b on the full (train and test) data set with the actual
training labels ŷ� and the (temporarily) assigned labels ŷu. Note that the re-
optimization of {w, b} is actually optimizing κ with fixed ŷ. We use the resulting
classifier to generate new predictions ti = w�xi + b for all test inputs xi. These
predictions are not immediately used to update the tentative labels of inputs xi.
Instead, it will be used to guide the label switching procedure in the subsequent
paragraph.

Label Switching. After the MPM is retrained and the predictions ti are
computed, we re-optimize the assignments of ŷu through label switching as in
TSVM [9]. However, unlike TSVM in which identifying a candidate pair of labels
for switching is straightforward by checking the values of slack variables, TMPM
has a more complicated objective function with respect to the label assignments.
A naive implementation is to tentatively switch each pair of labels to see if
it increases the objective value. But this leads to a worst case complexity of
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Algorithm 1. The TMPM algorithm

1: Input: Labeled training inputs and their corresponding labels {xi, yi}mi=1; Unla-
beled testing inputs {xi}ni=m+1.

2: Parameters: λ (for regularization)
3: Compute class ratio r on y or using prior knowledge.
4: Initialize class assignment vector ŷ = [y, ŷu] by training a MPM using labeled

inputs, and assign �r(n−m)� unlabeled test inputs with highest predicting value
to class +1, and the rest to class −1.

5: Compute μ̂+, μ̂−, Σ̂+, Σ̂−.
6: Set Σδ+ = Σδ− = λdiag(v), where v are the diagonal elements of the covariance

matrix of all training inputs.
7: while true do
8: (w, b) = Train MPM (μ̂+, μ̂−, Σ̂+, Σ̂−, Σδ+ , Σδ−)
9: (t, t̄+, t̄−) = Predict MPM (w, b,x)
10: if �(xi,xj) satisfying conditions in (5) break
11: while ∃(xi,xj) satisfying conditions in (5) do
12: Switch the labels of xi and xj (ŷi ⇔ ŷj).
13: Update μ̂+, μ̂−, Σ̂+, Σ̂−.
14: Update t̄+ = w�μ̂+ + b; t̄− = w�μ̂− + b;
15: end while
16: end while
17: Output: Class assignment vector on test inputs ŷu, MPM classifier (w, b).

O(n4d2)1, which is computationally inefficient when test data set is large. Here
we introduce a method to quickly identify candidate label pairs and update
the means and covariances at minimum cost, reducing the complexity of label
switching at each iteration to O(n log(n) + nd2).

Let us define the average prediction of class +1 as t̄+ = w�μ̂++b and similarly
t̄−. We search for pairs of test inputs (xi ∈ D+,xj ∈ D−) who, if their labels
were switched, would improve the objective κ. As we derive in the subsequent
section, we can identify such pairs as inputs xi,xj whose prediction values (ti, tj)
satisfy the following two conditions:

1. ti < tj

2. t̄− ≤ ti + tj
2

≤ t̄+
(5)

Intuitively these two conditions require to check for: 1. the input xi, which is
currently considered positive, has a lower prediction value than input xj , which
is assumed to be negative; 2. The average of the two predictions ti and tj lies
between the two class averages. We will prove in Theorem 1 that by switching
label pairs that meet these conditions, the objective strictly increases.

It is efficient to search for label pairs for switching based on the above condi-
tions. At each iteration, we first find the n+ positively labeled test data whose

1 First, explicitly computing the objective value requires O(nd2), and there are O(n2)
candidate pairs for each label switching; Second, the number of label-pairs to be
switched at each iteration is proportional to n.
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prediction values are smaller than the maximal prediction of D−, and similarly
we find the n− negatively labeled test inputs whose predictions are above the
minimal prediction of D+. These inputs are the candidates that meet Condition
1. This step requires O(n) time of computation. Second, we sort the prediction
values of these candidates, which can be done in O(n log(n)) time in a worst case.
Finally, we iteratively match the candidate from D+ with the lowest prediction
with the candidate from D− with the highest prediction. If they meet Condition
2, we switch their labels, update the means and covariances, and eliminate both
of them from the candidate set; otherwise, we remove the positively (negatively)
candidate if the right (left) inequality of Condition 2 is violated. It can be verified
that these eliminated instance will never meet the switching conditions in this
iteration. This procedure has a worst case complexity of O(nd2), if we update
the empirical moments using the rules in the following lemma.

Lemma 1. Let {μ̂′
+, Σ̂

′
+} denote the estimated mean and covariance of positive

class after switching two instances xi ∈ D+ and xj ∈ D−. Then we have

μ̂′
+ = μ̂+ +

1

|D+| (xj − xi), (6)

Σ̂′
+ =Σ̂+ +

|D+| − 1

|D+|2
(xj − xi)(xj − xi)

�+ (7)

1

|D+| (xi−μ+)(xj−xi)
�+

1

|D+| (xj−xi)(xi−μ+)
�,

where {μ̂+, Σ̂+} are the estimated mean and covariance before label switching.

Remark 1. Naturally, we can update the mean and covariance of the negative
class in a similar fashion. The above expressions enable us to re-estimate the
means and covariances after each label switching at a minimum cost, with a
complexity of O(d2).

Termination. We keep iterating between label switching and MPM re-training
until no more pairs can be found that satisfy (5). The TMPM algorithm is
summarized in pseudo-code in Algorithm 1.

Remark 2. The overall time complexity of Algorithm 1 is O(L(d3 + n log(n) +
nd2)), where L is the number of outer loop executions. Typically, we have L ≈
10. The term O(d3) results from re-training the MPM, following the method
proposed in [13]. The terms O(n log(n)+nd2) capture the complexity of finding
eligible pairs for switching and updating empirical moments.

4.3 Algorithm Analysis

In this subsection, we show that Algorithm 1 terminates in a finite number of
iterations.

Firstly, we prove that each MPM label switching strictly increases κ in (4).
We formalize this guarantee as Theorem 1.
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Theorem 1. If two test inputs xi∈D+, xj∈D− and their corresponding predic-
tions ti, tj satisfy the switching conditions in (5), then by switching the assigned
labels of xi and xj (ŷi ⇔ ŷj), the objective function value κ in (4) strictly in-
creases.

Proof: We first show that the numerator of (4) increases after the label switch-
ing. This follows from plugging in the mean and covariance updates stated above
in Eqs. (6) and (7).

w�(μ̂′
+ − μ̂′

−)

= w�(μ̂+ − μ̂−) + (
1

|D+| +
1

|D−| )(tj − ti)

> w�(μ̂+ − μ̂−).

The last inequality holds because of the condition ti < tj .
As a second step, we show that the denominator of (4) decreases after switch-

ing the labels. Again, by using the update rules in (6) and (7), we have

w�Σ̂′
+w =w�Σ̂+w +

|D+| − 1

|D+|2 (w�(xj − xi))
2

+
2

|D+|w
�(xi − μ+)(xj − xi)

�w

=w�Σ̂+w +
1

|D+|w
�(xj−xi)w

�(xj+xi − 2μ̂+)

− 1

|D+|2 (w
�(xj − xi))

2

=w�Σ̂+w+
(tj−ti)(ti+tj−2t̄+)

|D+| − (tj−ti)
2

|D+|2
<w�Σ̂+w,

where the last inequality holds because of the switching conditions(ti+tj)/2≤ t̄+
and ti < tj given in Theorem 1.

Following a similar line of reasoning, we can show that

w�Σ̂′
−w < w�Σ̂−w. (8)

Further, notice that Σδ+ and Σδ− are independent of class assignment vector
ŷ, we have the denominator of (4) decreases after label switching.

As the enumerator of κ increases and its denominator decreases, and as the
label switching preserves the class ratio of of ŷu, it follows that the objective κ
in (4) strictly increases with each label switching.

Theorem 2. Algorithm 1 terminates after a finite number of iterations.

Proof: Since the label switching strictly increases the objective according to The-
orem 1, and the re-training of MPM never decrease the objective, the alternat-
ing optimization method in Algorithm 1 strictly improves the value of κ at each



Submission to ECML/PKDD2014 587

iteration. Therefore, the outer loop cannot repeat label assignments (Otherwise,
we will solve a same MPM model in two differently iterations, which will yield a
same value of κ. This means the objective is not strictly increasing over these two
iterations, leading to a contradictory). Since the number of label assignments is
finite, the algorithm must terminate after a finite number of iterations.

Note that Theorem 2 is based on a worst case scenario analysis. In prac-
tice, each iteration switches many labels and TMPM terminates after a small
number(≈ 10) of iterations.

4.4 TMPM with Manifold Regularization

Transductive learning or semi-supervised learning algorithms can often assist
classifiers by revealing underlying structure in the data distribution. A success-
ful approach is manifold regularization, introduced by Belkin et al. [1]. Here,
a proximity graph is created and the classifier is regularized to make similar
predictions on similar inputs. This approach is typically successful if the data
distribution obeys some intrinsically low dimensional manifold structure. TMPM
can also incorporate manifold regularization naturally. We replace the regular-
ization covariance matrices Σδ+ , Σδ− in the TMPM objective function (4) with a
Laplacian regularization term [21]. More formally, we set Σδ+ =Σδ− =λX�LX,
where X�=[x1, . . .xn] is a matrix containing both training and test inputs and
L ∈R

n×n denotes the graph Laplacian constructed from x1, . . . ,xn. Finally, λ
denotes a regularization tradeoff parameter. We refer to this manifold regular-
ization extension as TMPMmr.

5 Results

We evaluate TMPM on a wide variety of synthetic and real world data sets. Our
implementation is implemented in MATLABTM , and is executed on an Intel i7
Quad Core CPU 3.20GHz machine with 32GB RAM.

5.1 Toy Example

We use a toy data set to visualize the transductive learning process of TMPM.
The toy data set is a binary classification problem, where each class contains
200 inputs generated from a 2-dimensional Gaussian distribution. We randomly
reveal one label from each class to create a training set with two instances. The
remaining inputs are unlabeled and constitute the test data, see Figure 1 (upper
left panel). On this data, a linear SVM achieves 0.78 test accuracy.

Figure 1 visualizes the decision boundary and label assignments of each iter-
ation of TMPM until termination. Inputs that will be switched in this iteration
are highlighted with circles. The inner ellipsoids represent the covariances of the
data in D+,D−, and the outer ellipsoids are κ times larger, so that the decision
plane is tangent to both of the outer ellipsoids. Since p=κ2/(1 + κ2), the larger
κ, the higher the minimax probability p of separating the two subsets. The value



588 G. Huang et al.

Data Iter: 1
Acc=82.09%
p=65.46%

=1.38

Iter: 2
Acc=89.05%
p=67.7%

=1.45

Iter: 3
Acc=97.01%
p=73.48%

=1.66

Iter: 4
Acc=100%
p=85.89%

=2.47

Iter: 5
Acc=100%
p=91.95%

=3.38

Fig. 1. The TMPM algorithm visualized on a toy data set. Only two inputs are initially
labeled (big square and cross, top left). Small dots and crosses indicate the labels
assigned by TMPM to the test data. Inputs highlighted with circles are those to be
switched in a particular current iteration. The inner ellipsoids visualize the covariances
of two classes, and the outer ellipsoids represent κ times of the covariances.

of p and the classification accuracy are indicated in the top left of each frame,
both of which increase monotonically until the algorithm terminates after the
5th iteration, when no more pairs of inputs satisfy the conditions for switching.
As a byproduct, we obtain a lower bound p = 91.95% probability of separating
these two classes for additional unseen data. We also obtain the estimated means
and covariances for the two classes:

μ̂+ = (1.01,−1.00), μ̂− = (−1.00, 0.94),

Σ̂+ =

[
0.94 0.81
0.81 1.04

]
, Σ̂− =

[
0.89 0.72
0.72 0.87

]
,

which are very close to the true means and covariances of the two Gaussian
distributions that generate the data:

μ+ = (1,−1), μ− = (−1, 1), Σ+ = Σ− =

[
1.0 0.8
0.8 1.0

]
.

5.2 Transductive Learning Results

We evaluate TMPM on several real-world data sets, and compare against state-
of-the-art transductive/semi-supervised learning algorithms. The characteristics
of these data sets are summarized in the second and third rows of Table 1.
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Experiment Setup. For each data set, we randomly select 10 samples as la-
beled set, another 10 samples as validation set, and the rest as unlabeled test
set. The prediction error rate on the unlabeled test set is used as the evaluation
criteria, and we report the average results over 20 runs with randomly selected
labeled/validation/unlabeled data. The linear TMPM is used for all the experi-
ments (for high dimensional data where d > n, we use linear kernel TMPM given
in the Appendix). The only hyper-parameter in linear TMPM is the regulariza-
tion coefficient λ, which is selected from the candidate set [10−4, 10−3, . . . , 104]
based on the performance on the validation set.

Datasets. The g50c, g241c, digit1, text data sets are obtained form Olivier
Chapelle’s Semi-Supervised Learning benchmark data set collection2 [5]. The
data set breast, australian (Australian Credit Approval), pcmac (corresponding
to two classes of the 20 newsgroups data set), adults, kddcup, are taken from the
UCI Machine Learning Repository3.

Baselines. First, the SVM and MPM are trained using only the labeled data,
and we report the better results of a linear version and an RBF kernel version
of these algorithms. Other baselines include the Transductive SVM (TSVMlight)
[9], the TSVM with multiple switching strategy (TSVMms) [18], the semi-
supervised EM with Gaussian distribution assumption (for all data sets except
pcmac and text) and with multinomial distribution assumption (for pcmac and
text), the low density separation algorithm (LDS) [6], and the squared-loss mu-
tual information regularization (SMIR) [15]. For TSVMlight and TSVMms, we
report both linear and RBF kernel version results. The tradeoff parameter C
in these algorithms are selected from the set [10−4, 10−3, . . . , 104], and the ker-
nel width is selected from the set [2−5, 2−4, . . . , 21] times the average pairwise
distance of the training data. The kernel type is indicated in sub-scripts (e.g.

TSVMlight
linear and TSVMlight

rbf ). For EMgauss, a ridge λIII is added to the covariance
matrix when computing posterior probability, where λ is selected from the set
[10−6, 10−5, . . . , 102]. For LDS and SMIR, we follow the suggestions in [6] and
[15] to create a candidate hyperparameter set and select the best value based on
the validation set.

Prediction Accuracy. The experimental results are summarized in Table 1. For
each data set, the best performance up to statistical significance is highlighted
in bold. Standard deviations are provided inside parenthesis. If an algorithm is
not able to scale to a particular data set (or fails to converge), it is indicated
with N/A.

A few trends can be observed: 1. TMPM obtains the best result (up to sta-
tistical significance) on almost all data sets; 2. TMPM’s standard deviation of
error is always the lowest among all TL/SSL algorithms over all data sets except
pcmac and text, demonstrating that TMPM is insensitive to the initial predic-
tions on unlabeled test data; 3. Generally, non-linear classifiers do not outperform

2 http://olivier.chapelle.cc/ssl-book/benchmarks.html
3 http://archive.ics.uci.edu/ml/datasets.html

http://olivier.chapelle.cc/ssl-book/benchmarks.html
http://archive.ics.uci.edu/ml/datasets.html
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Table 1. Data set statistics and test error rates (in %) on nine benchmark data sets,
comparing TMPM against various state-of-the-art algorithms. N/A indicates that an
algorithm fails to scale to that specific data set. Best results up to statistical significance
are highlighted in bold.

Statistics g50c g241c breast australian digit1 pcmac text adults kddcup

# features 50 241 10 14 241 3289 11960 123 122

# inputs 550 1500 683 690 1500 1943 1500 32541 500000

Algorithm Test-error (%)

SVM 16.7 ± 4.2 36.9 ± 2.4 3.2 ± 0.3 19.3 ± 5.9 20.0 ± 5.0 38.4 ± 4.9 35.5 ± 4.4 26.8 ± 5.6 5.1 ± 1.7

MPM 18.1 ± 3.9 37.4 ± 2.5 3.3 ± 0.2 19.6 ± 3.2 25.1 ± 3.7 39.7 ± 5.6 38.9 ± 4.0 24.2 ± 4.8 1.6 ± 1.0

TSVMlight
linear 4.8 ± 0.7 17.5 ± 3.3 2.8 ± 0.5 16.5 ± 6.7 16.7 ± 2.4 40.9 ± 9.8 27.0 ± 4.4 N / A N / A

TSVMlight
rbf 5.0 ± 0.5 14.3 ± 1.2 3.5 ± 0.7 16.7 ± 4.9 15.6 ± 2.0 41.6 ± 10.4 29.5 ± 6.2 N / A N / A

TSVMms
linear 6.0 ± 1.3 17.1 ± 4.4 3.2 ± 0.1 16.3 ± 4.1 15.7 ± 4.0 38.8 ± 8.9 26.3 ± 3.7 22.3 ± 4.0 N / A

TSVMms
rbf 4.9 ± 0.6 15.1 ± 5.5 3.3 ± 0.2 17.0 ± 5.5 15.6 ± 3.3 37.8 ± 4.5 27.4 ± 3.8 N / A N / A

EM 9.3 ± 4.8 37.7 ± 10.0 8.6 ± 4.3 19.9 ± 5.9 11.3 ± 9.1 33.1 ± 9.8 33.7 ± 0.3 24.2 ± 8.5 1.0 ± 0.4

LDS 9.2 ± 4.9 15.7 ± 6.7 4.3 ± 0.7 16.8 ± 2.8 13.5 ± 6.9 38.4 ± 7.5 27.4 ± 3.8 N / A N / A

SMIR 17.1 ± 4.4 36.8 ± 3.3 4.0 ± 1.2 19.9 ± 4.0 12.5 ± 5.0 44.7 ± 5.0 35.2 ± 4.6 N / A N / A

TMPM 4.8 ± 0.4 13.1 ± 0.4 2.8 ± 0.1 15.2 ± 0.8 9.0 ± 1.8 30.5 ± 8.0 35.2 ± 5.2 20.5 ± 2.8 0.6 ± 0.1
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Fig. 2. Classification accuracy (in %) and computational time (in seconds) of different
TL algorithms on data sets described in Table 1. Error bar indicates the standard
deviation.

linear classifiers, which is not unusual in the TL/SSL setting due to the typically
small training set sizes.

Analysis.We explain the strong performance of TMPM in parts on the underly-
ing MPM framework. Compared to TSVMlight and TSVMms, TMPM only yields
significantly worse performance on the text data, but outperforms or matches
both on all other problems.
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Fig. 3. Transductive learning curve on g50c and digit1. Each dotted vertical line rep-
resents a (w, b) re-optimization step.

Table 2. Test error rates on data sets with manifold structure. Best results (up to
statistical significance) are highlighted in bold.

d n SVM LapSVM LapMPM TMPMmr

coil20 1024 576 13.3 ± 4.2 10.5 ± 3.9 12.9 ± 3.4 11.7 ± 3.9

uspst 256 803 16.5 ± 2.3 14.2 ± 2.4 16.6 ± 2.4 13.6 ± 3.4

Figure 3 shows the transduction accuracy and the value of p with respect to
the number of switched label pairs on two representative data sets. Each interval
between two vertical lines corresponds to an execution of one inner loop of Al-
gorithm 1. As predicted, p strictly increases after each pair of labels is switched
or w, b are re-optimized. Not surprisingly, the transduction accuracy increases
steadily as p increases. We can also observe that the number of switched la-
bels per iteration decrease (roughly) exponentially, indicating TMPM converges
quickly in practice.

Speed. In Figure 2 we compare the training time (plotted on a logarithmic scale)

and classification accuracy of the above TL/SSL algorithms (we omit TSVMlight
rbf

and TSVMms
rbf here since they are significantly slower than their linear version).

The TMPM is the fastest among all the six algorithms on 6/9 of the data sets.
It is only slower than the EMmulti algorithm on two high dimensional text data
(pcmac, text) sets and adult (although the differences are sometimes no more
than a few seconds). The TMPM is 1 to 4 orders of magnitude faster than
the TSVMlight, and is also significantly faster than the TSVMms. The speed
advantage of TMPM over other algorithms is even larger as the unlabeled data
increases.
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5.3 Performances on Manifold Data Sets

We also evaluate TMPM with manifold regularization (TMPMmr) on two well
known data sets considered to have manifold structures (from the UCI data set
repository). For each data set, we select 50 inputs as labeled set, 50 as hold-out,
and leave the rest as unlabeled test set.

The kernel TMPM with RBF kernel is adopted here, and the kernel width
is selected from the set [2−5, 2−4, . . . , 21] times the average pairwise distance
of the training data. For comparison, we evaluate two representative manifold-
based SSL algorithms, LapSVM [1] and LapMPM [22]. For all algorithms, the
same graph Laplacian is used, whose parameter setting can be found in [19]. The
prediction error rates (in %) on unlabeled test set are summarized in Table 2.
The results show that TMPMmr is also competitive with LapSVM and LapMPM
on these manifold data sets.

6 Conclusion

In this paper, we propose a novel transductive learning algorithm (TMPM) based
on the minimax probability machine. Although TL learning is not new, the
TMPM framework provides a fresh and exciting approach to transductive learn-
ing. The underlying assumption is that the optimal decision hyperplane should
lead to a maximum worst-case separation probability between different data
classes. We convert this search problem into a mixed-integer programming, and
propose an efficient algorithm to approximate it greedily.

We show that TMPM converges in a finite number of iterations and has a
low computational complexity in the number of unlabeled inputs. Experimental
results demonstrate that TMPM is promising in generalization performance and
scales naturally to large data sets.
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Appendix: Kernel TMPM
Suppose that the labeled training data are re-arranged so that the firstm+ inputs
belong to class +1, and the rest m− inputs belong to class −1. Let K ∈ R

m×m

(m = m+ + m−) denotes the kernel matrix, whose first m+ rows and last m−
rows are denoted by K+ and K−, respectively.

The kernel MPM is formulated as

max
θθθ∈Rm

θθθ�(ηηη+ − ηηη−)√
θθθ�(ΦΦΦ�

+ΦΦΦ+ + λ+K)θθθ +
√
θθθ�(ΦΦΦ�−ΦΦΦ− + λ−K)θθθ

where

ΦΦΦ+ = (K+ − 111m+ηηη
�
+)/

√
m+

ΦΦΦy = (K− − 111m−ηηη
�
−)/

√
m−

[ηηη+]i =

m+∑
j=1

Kj,i,

[ηηη−]i =
m∑

j=m++1

Kj,i,

and 111n denotes an all one vector of dimension n.
Based on the kernel MPM, we give the kernel TMPM in Algorithm 2.

Algorithm 2. The Kernel TMPM algorithm

1: Input: Labeled data {xi, yi}mi=1; Unlabeled test inputs {xi}ni=m+1;
2: Parameters: λ (for regularization)
3: Compute class ratio r on y or using prior knowledge.
4: Initialize class assignment vector ŷ = [y, ŷu] by training a kernel MPM using

labeled inputs, and assign �r(n−m)� unlabeled test inputs with highest predicting
value to class +1, and the rest to class −1.

5: Compute ηηη+, ηηη−, K+ and K−.
6: while true do
7: (θθθ, b) = Train kernel MPM (ηηη+, ηηη−,K+,K−, λ)
8: t̄+ = θθθ�ηηη+ + b, t̄− = θθθ�ηηη− + b
9: t = Predict kernel MPM (θθθ, b,x)
10: if �(ti, tj) satisfying the conditions in (5) break
11: while ∃(ti, tj) satisfying conditions in (5) do
12: Switch the labels of xi and xj (ŷi ⇔ ŷj).
13: Update ηηη+, ηηη−, K+ and K−.
14: s̄ = θθθ�ηηη+ − b; t̄ = θθθ�ηηη− − b;
15: end while
16: end while
17: Output: Class assignment vector on test inputs ŷu, MPM classifier (θθθ, b).
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