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Abstract

Support vector machines (SVM) can classify data sets along highly non-linear
decision boundaries because of the kernel-trick. This expressiveness comes at a
price: During test-time, the SVM classifier needs to compute the kernel inner-
product between a test sample and all support vectors. With large training data
sets, the time required for this computation can be substantial. In this paper,
we introduce a post-processing algorithm, which compresses the learned SVM
model by reducing and optimizing support vectors. We evaluate our algorithm
on several medium-scaled real-world data sets, demonstrating that it maintains
high test accuracy while reducing the test-time evaluation cost by several orders
of magnitude—in some cases from hours to seconds. It is fair to say that most of
the work in this paper was previously been invented by Burges and Schölkopf al-
most 20 years ago. For most of the time during which we conducted this research,
we were unaware of this prior work. However, in the past two decades, computing
power has increased drastically, and we can therefore provide empirical insights
that were not possible in their original paper.

1 Introductions

Support Vector Machines (SVM) are arguably one of the great success stories of machine learning
and have been used in many real world applications, including email spam classification [7], face
recognition [12] and gene selection [11]. In real world applications, the evaluation cost (in terms
of memory and CPU) during test-time is of crucial importance. This is particularly prominent in
settings with strong resource constraints (e.g. embedded devices, cell phones or tablets) or frequently
repeated tasks (e.g. webmail spam classification, web-search ranking, face detection in uploaded
images), which can be performed billions of times per day. Reducing the resource requirements
to classify an input can reduce hardware costs, enable product improvements, and help curb power
consumption.

Test-time cost is determined mainly by two components: classifier evaluation and feature extraction
cost. Reducing feature extraction cost has recently obtained a significant amount of attention [3;
5; 15; 17; 19; 23; 25; 26]. These approaches reduce the test-time cost in scenarios where features
are heterogeneous, extracted on-demand, and are significantly more expensive to compute than the
classifier evaluation.

In this paper, we focus on the other common scenario where the classifier evaluation cost dominates
the overall test-time cost. Specifically, we focus on kernel support vector machine (SVM) [20].
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Kernel computation can be expensive because it is linear in the number of support vectors and, in
addition, often requires expensive exponentiation (e.g. for the radial basis or χ2 kernels). Previ-
ous work has reduced the classifier complexity by selecting few support vectors through budgeted
training [6; 24] or with heuristic selection prior to learning [13].

We describe an approach that does not select support vectors from the training set, but instead learns
them to match a pre-defined SVM decision boundary. Given an existing SVM model withm support
vectors, it learns r�m “artificial support vectors”, which are not originally part of the training set.
The resulting model is a standard SVM classifier (thus can be saved, for example, in a LibSVM [4]
compatible file). Relative to the original model, it has comparable accuracy, but it is up to several
orders of magnitudes smaller and faster to evaluate. We refer to our algorithm as Compressed Vector
Machine (CVM) and demonstrate on eight real-world data sets of various size and complexity that
it achieves unmatched accuracy vs. test-time cost trade offs.

2 Related Work

Burges and Schölkopf [2] invented Compressed Vector Machines long before us. While we conducted
our research, we were not aware of their work until very late during the final stages of paper writing.
We still consider our perspective and additional experiments valuable and decided to post our results
as a techreport. However we do want to emphasize that all academic credit should go to them who
were clearly ahead of us.

Reducing test-time cost has recently attracted much attention. Much work [3; 5; 10; 15; 17; 19; 23;
25] focuses on scenarios where features are extracted on-demand and the extraction cost dominates
the overall test-time cost. Their objective is to minimize the feature extraction cost.

Model compression was pioneered by [1]. Our work was inspired by their vision, however it differs
substantially, as we do not focus on ensembles of classifiers and instead learn a model compressor
explicitly for SVMs. More recently, [26] introduces an algorithm to reduce the test-time cost specif-
ically for the SVM classifier. However, similar to the approaches mentioned above, they focus on
learning a new representations consisting of cheap non-linear features for linear SVMs.

[6] propose an algorithm to limit the memory usage for kernel based online classification. Different
from our approach, their algorithm is not a post-process procedure, and instead they modify the
kernel function directly to limit the amount of memory the algorithm uses. Similar to [6], [24] also
focusses on online kernel SVM, and attacks primarily the training time complexity.

Of particular relevance is [13], which, specifically reduces the SVM evaluation cost by reducing the
number of support vectors. Heuristics are used to select a small subset of support vectors, up to a
given budget, during training time, thus solving an approximate SVM optimization. In contrast, our
method is a post-processing compression to the regular SVM. We begin from an exact SVM solution
and compress the set of support vectors by choosing and optimizing over a small set of support
vectors to approximate the optimal decision boundary. This post-processing optimization framework
renders unmatched accuracy and cost performance. Similar approaches have successfully learned
pseudo-inputs for compressed nearest neighbor classification sets [14] and sparse Gaussian process
regression models [22].

3 Background

Let the data consist of input vectors {x1, . . . ,xn} ∈ Rd and corresponding labels {y1, . . . , yn} ∈
{−1,+1}. For simplicity we assume binary classification in the following section, but our algo-
rithm is easily extended to multi-class settings using one-vs-one [21], one-vs-all [18], or DAG [16]
approaches, and results are included for several multi-class datasets.

Kernel support vector machines. SVMs are popular for their large margin enforcement, which
leads to good generalization to unseen test data, and their formulation as a convex quadratic opti-
mization problem, guaranteeing a globally optimal solution. Most importantly, the kernel-trick [20]
may be employed to learn highly non-linear decision boundaries for data sets that are not linearly
separable. Specifically, the kernel-trick maps the original feature space xi into a higher (possibly
infinite) dimensional space φ(xi).
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SVMs learn a hyperplane in this higher dimensional space by maximizing the margin 1
‖w‖ and

penalizing training instances on the wrong side of the hyperplane,

min
w,b
‖w‖+ C

n∑
i

(
max

(
1− yiw>φ(xi) + b, 0

))2
, (1)

where b is the bias, and C trades-off regularization/margin and training accuracy. Note that we
use the quadratic hinge loss penalty and thus (1) is differentiable. The power of the kernel trick
is that the higher dimensional space φ(xi) never needs to be expressed explicitly, because (1) can
be formulated in terms of inner products between input vectors. Let a matrix K denote these inner
products, where Kij = φ(xi)

>φ(xj), and K is the training kernel matrix. The optimization in (1)
can be then expressed in terms of kernel matrix K in the dual form:

max
α1,...,αn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjKij , s.t.
n∑
i=1

αiyi = 0 and αi ≥ 0, (2)

where αi are the Lagrange multipliers.

the classification rule f(·) for a test input xt can also be expressed by testing kernel K̃ that consists
of inner products between test inputs E = {xt} and support vectors S = {xi|αi 6= 0}, K̃it =
φ(xi)

>φ(xt), where

f(φ(xt)) =

n∑
i=1

αiyiK̃it + b. (3)

Note that once testing kernel K̃ is computed, generating the prediction is merely a linear combina-
tion, and thus the dominating cost is computing the testing kernel itself.

Least angle regression. LARS [8] is a widely used forward selection algorithm because of its
simplicity and efficiency. Given input vectors x, target labels y, and the quadratic loss `(β) =
(xβ−y)2, LARS learns to approximate targets by building up the coefficient vector β in successive
steps, starting from an all-zero vector. To minimize the loss function `, LARS initially descends on
a coordinate direction that has the largest gradient,

βt = argmax
βt

∂`

∂βt
. (4)

The algorithm then incorporates this coordinate into its active set. After identifying the gradient di-
rection, LARS selects the step size very carefully. Instead of too greedy or too tiny, LARS computes
a step size that a new direction outside of the active set has the same maximum gradient as directions
in the active set. LARS then include this new direction into the active set.

In the following iterations, LARS gradient descends on a direction that maintains the same gradient
for all directions in the active set. In other words, LARS descends following an equiangular direction
of all directions in the active set. The algorithm then repeats computing step-size, including new
directions into the active set, and descending on an equiangular directions. This process makes
LARS very efficient, as after T iterations, LARS solution has exactly T directions in the active set,
or equivalently, only T non-zero coefficients in β.

4 Method

In this section, we detail the CVM approach to reduce the test-time SVM evaluation cost. We regard
CVM as a post-processing compression to the original SVM solution. After solving an SVM, we
obtain a set of support vectors S = {xi|αi 6= 0}, and the corresponding Lagrange multipliers αi.
Given the original SVM solution, we can model the test-time evaluation cost explicitly.

Kernel SVM evaluation cost. Based on the prediction function (3) we can formulate the exact
SVM classifier evaluation cost. Let e denote the cost of computing a test kernel entry K̃it (i.e.
kernel function of a test input xt and a support vector xi). We assume the computation cost is
identical across all test inputs and all support vectors. As shown in (3), generating a prediction for a
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testing input requires computing the kernel entry between the test input and all support vectors. The
total evaluation cost is a function of the number of support vectors nsv. After obtaining the kernel
entries for a test point xt, prediction is simply linear combination of the kernel row K̃t weighted by
α. The cost of computing this linear combination is very low compared to the kernel computation,
and therefore the total evaluation cost ce = nsve. We aim to reduce the size of the support vector set
nsv without greatly affecting prediction accuracy.

Removing non-support vectors. Since the test-time evaluation cost is a function of the number
of support vectors, the goal is to cherry-pick and optimize a subset of the optimal support vectors
bounded in size by a user-specified compression ratio. We first note that all non-support vectors
can be removed during this process without affecting the full SVM solution. If we define a design
matrix K̂ ∈ Rn×n, where K̂ij = yiKij . The squared penalty SVM objective function in (1) can be
expressed with Lagrange parameter α and the kernel matrix K:

min
α,b

(
max(1− K̂α− yb, 0)

)2
+ α>Kα. (5)

Since (5) is a strongly convex function, and all non-support vectors have the corresponding Lagrange
multiplier αi = 0, we can remove all non-support vectors from the optimization problem and the
full SVM optimal solution stays the same.

To find an optimal subset of support vectors given the compression ratio, we re-train the SVM with
only support vectors and a constraint on the number of support vectors. Note that α are effectively
the coefficients of support vectors, and we can efficiently control the number of support vectors by
adding an l0 norm on α. The optimization problem becomes

min
α,b

(
1− K̂α− yb

)2
+ α>Kα (6)

s.t.‖α‖0 ≤
1

e
Be,

where Be evaluation cost budget, and consequently, 1
eBe is the desired number of support vectors

based on the budget. Note that after removing non-support vectors, we obtain a condensed matrix
K̂ ∈ Rnsv×nsv .

Forming ordinary least squares problem. The current form of equation (6) can be made more
amenable to optimization by rewriting the objective function as an ordinary least square problem.
Expanding the squared term, simplifying, and fixing the bias term b (as it does not affect the solution
dramatically), we re-format the objective function (6) into

min
α

(1− yb)>(1− yb)− 2α>K̂>(1− yb) + α>(K̂>K̂ + K)α. (7)

We introduce two auxiliary variables Ω and β, where Ω>Ω = K̂>K̂+K and Ω>β = −K̂>(1−yb).
Because K̂>K̂ + K is a symmetric matrix, we can compute its eigen-decomposition

K̂>K̂ + K = SDS>, (8)

where D is the diagonal matrix of eigenvalues and S is the orthonormal matrix of eigenvectors.
Moreover, because the matrix K̂>K̂+K is positive semi-definite, we can further decompose SDS>

into an inner product of two real matrices by taking the square root of D. Let Ω =
√
DS>, and we

obtain a matrix Ω that satisfies Ω>Ω = K̂>K̂ + K. After computing Ω, we can readily compute
β = −(Ω>)−1K̂>(1− yb), where (Ω>)−1 = 1√

D
S>.

With the help of the two auxiliary variables, we convert (7), plus a constant term1, into least squares
format. Together with relaxation of the non-continuous l0- norm constraint to an l1-norm constraint,
we obtain

min
α

(Ωα + β)2, s.t. ‖α‖1 ≤
1

e
Be. (9)

1(1− yb)>
(
K̂(K̂>K̂+K)−1K̂> − I

)
(1− yb)
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Figure 1: Illustration of searching for a subspace V ∈ R2 that best approximates predictions P1 and
P2 of training instances in R3 space. Neither V1 or V2, spanned by existing columns in the kernel
matrix, is a good approximation. V ∗ spanned by kernel columns computed from two artificial
support vectors is the optimal solution.

Compressing the support vector set. The squared loss and l1 constraint in (9) lead naturally to the
LARS algorithm. Given a budget Be, we can determine the maximum size m of the compressed
support vector set (m = Be

e ). Using LARS, we start from an empty support vector set and add m
support vectors incrementally. Since adding a support vector is equivalent to activating a coefficient
in α to a non-zero value, we can obtain m optimal support vectors by running LARS optimization
in (9) exactly m steps, where each step activates one coefficient. The resulting solution gives the
optimal set of m support vectors. We refer this intermediate step as LARS-SVM. Note that this step
is crucial for the problem, as this LARS-SVM solution serves as a very good initialization for the
next step, which is a non-convex optimization problem.

Gradient support vectors. If we interpret α as coordinates and the corresponding columns in the
kernel matrix K as basis vectors, then these basis vectors span anRnsv space in which lie predictions
of the original SVM model. In this compression algorithm, our goal is to find a lower dimensional
subspace that supports good approximations of the original predictions. After running LARS for
m iterations, we obtain m support vectors and their coefficients α, forming an Rm subspace of the
space spanned by the full kernel matrix.

We illustrate this lower dimensional approximation in Figure 1. Vectors P1 and P2 are predictions of
two training points made in the full SVM solution space (R3 and spanned by three support vectors).
We want to compress the model to two support vectors by looking for a subspace V ∈ R2 that
supports the best approximations of these two predictions. Using existing support vectors as a basis,
we can find subspaces V1 and V2, each spanned by a pair of support vectors. The projections of P1

and P2 on plane V1 (PV1
1 and PV1

2 ) are closest to the original predictions P1 and P2, and thus V1 is the
better approximation. However, in this case, neither V1 nor V2 is a particularly good approximation.
Suppose we remove the restriction of selecting a subspace spanned by existing basis vectors in the
kernel matrix, instead optimizing the basis vectors to yield a more suitable subspace. In Figure 1,
this is illustrated by the optimal subspace V ∗ which produces a better approximation to the target
predictions.

Note that the basis vectors (columns of the kernel matrix) are parameterized by support vectors. By
optimizing these underlying support vectors, we can search for a better low-dimensional subspace.
If we denote Km as the training kernel matrix with only m columns corresponding to the support
vectors chosen by LARS, and αm as the coefficients of these support vectors, we can formulate the
search for artificial support vector as an optimization problem. Specifically, we minimize a squared
loss between approximate and full SVM predictions over all support vectors, and the parameters are
support vectors.

min
(x1,...,xm)

L =
(
Kmαm −Kα

)2
, (10)

where Kij is the kernel entry, and for simplicity, we use radial basis function (RBF) kernel function

(Kij = e
‖xi−xj‖2

2σ2 ). However, other kernel functions are equally suitable. The unconstrained op-
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Figure 2: Illustration of each step of CVM on a synthetic data set. (a) Simulation inputs from two
classes (red and blue). By design, the two classes are not linear separable. (b) Decision boundary
formed by full SVM solution (black curve). A small subset of support vectors picked by LARS (gray
points) and the compressed decision boundary formed by this subset of support vectors (gray curve).
(c-h) Optimization iterations. The gradient support vectors are moved by the iterative optimization.
The optimized decision boundary formed by gradient support vectors (green curve) gradually ap-
proaches the one formed by full SVM solution.

timization problem (10) can be solved by conjugate gradient descent with respect to the chosen m
support vectors. Since α’s are the coordinates with respect to the basis, we optimize α jointly with
support vectors, which is faster than optimizing basis and solving coordinates alternatively. The gra-
dients can be computed very efficiently using matrix operations. Since gradient descent on support
vectors is equivalent to moving these support vectors in a continuous space, thereby generating m
new support vectors, we refer to these newly generated support vectors as gradient support vectors.
We denote this combined method of LARS-SVM and gradient support vectors as Compressed Vec-
tor Machine (CVM). Because the optimization problem in (10) is non-convex with respect to xi, we
initialize our algorithm with the basis Km and coordinates αm returned in the LARS-SVM solution.

In practice, it may be desirable to optimize both the SVM cost parameter C and any kernel param-
eters (e.g. σ2 in the RBF kernel) for the final CVM model. Additionally, it may be preferable to
optimize CVM constrained by the validation accuracy of the compressed model rather than the size
of the support vector budget. Constrained Bayesian optimization [9] supports efficient constrained
joint hyperparameter optimizations of this type. Additionally, the L1-penalized support vector se-
lection in the LARS-SVM step may benefit from recent work on highly parallel Elastic Net solvers
[27].

5 Results

In this section, we first demonstrate Compressed Vector Machine (CVM) on a synthetic data set to
graphically illustrate each step in the algorithm. We then evaluate CVM on several medium-scale
real-world data sets.

Synthetic data set. The data set contains 600 sample inputs from two classes (red and blue), where
each input contains two features. The blue inputs are sampled from a Gaussian distribution with
mean at the origin and variance 1, and red inputs are sampled from a noisy circle surrounding the
blue inputs. As shown in Figure 2(a), by design the data set is not linearly separable. For simplicity,
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we treat all inputs as training inputs. To evaluate CVM, we first learn an SVM with the RBF kernel
from the full training set. We plot the resulting optimal decision boundary in Figure 2(b) with a
black curve. In total, the full model has 80 support vectors.

To compress the model, we first select a subset of support vectors by solving LARS-SVM opti-
mization (9). Specifically, we compress the model to 10% of its original size, 8 support vectors, by
running LARS for 8 iterations. The 8 LARS-SVM support vectors are shown in Figure 2(b) as solid
gray points, and the approximate LARS-SVM decision boundary is shown by the gray curve.

Since the subspace formed by 8 support vectors is heavily restricted by the discrete training input
space, the approximation is poor. To overcome this problem, we search for a better subspace or basis
in a continuous space, and perform gradient descent on support vectors by optimizing (10). In Figure
2(c-h), we illustrate the optimization with updated support vector locations and optimized decision
boundaries as we gradually increase the number of iterations. The resulting gradient support vectors
are shown as gray points and the new optimized decision boundaries formed from these new gradient
support vectors are shown by green curves. After 2560 iterations, as shown in Figure 2(h), we can
observe that the optimized decision boundary (green) is very close to the boundary captured in the
full model (black). These optimized decision boundaries demonstrate that moving a small subset
of support vectors in a continuous space can efficiently approximate the optimal decision boundary
formed by full SVM solution, supporting effective SVM model compression.

Statistics Pageblocks Magic Letters 20news MNIST DMOZ
#training exam. 4379 15216 16000 11269 60000 7184
#testing exam. 1094 3804 4000 7505 10000 1796
#features 10 10 16 200 784 16498
#classes 2 2 26 20 10 16

Table 1: Statistics of all six data sets.

Large real-world data sets. To evaluate the performance of CVM on real-world applications, we
evaluate our algorithm on six data sets of varying size, dimensionality and complexity. Table 1
details the statistics of all six data sets. We use LibSVM [4] to train a regular RBF kernel SVM
using regularization parameter C and RBF kernel width σ selected on a 20% validation split. For
multi-class data sets, we use the one-vs-one multi-class scheme. The classification accuracy of test
predictions from this SVM model serves as a baseline in Figure 3(full SVM).

Given the full SVM solution, we run CVM in two steps. First, we use LARS solve the optimization
problem in (9) using all support vectors from the original SVM model. An initial compressed
support vector set is selected with a target compressed size (e.g. 10 out of 500 support vectors).
The selected support vectors serve as the second baseline in Figure 3(LARS-SVM). Second, we shift
these support vectors in a continuous space by optimizing (10) w.r.t. the input support vectors and the
corresponding Lagrange multipliers α, generating gradient support vectors. This final set of gradient
support vectors constitutes the CVM model. To show the trend of accuracy/cost performance, we
plot the classification accuracy for CVM after adding every 10 support vectors. Figure 3 shows the
performance of CVM and the baselines on all six data sets.

Comparison with prior work. Figure 3 also shows a comparison of CVM with Reduced-SVM [13].
This algorithm takes an iterative two phase approach. First a set of support vectors is heuristically
selected from random samples of the training set and added to the existing set of support vectors
(initially empty). Then, the model weights are optimized by an SVM with the quadratic hinge loss.
The algorithm alternates these two steps until the target number of support vectors is reached.

As shown in the Figure 3, CVM significantly improves over all baselines. Compared to the current
state-of-the-art, Reduced-SVM, CVM has the capability of moving support vectors, generating a
new basis, and learning a highly approximated basis to match the decision boundaries formed by
the full SVM solution. It is this ability that distinguishes CVM from other algorithms when the
evaluation budget is low. Across all data sets, CVM maintains close to the same accuracy as the full
SVM with merely 10% of the support vectors.
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