
Journal of Machine Learning Research 15 (2014) 2113-2144 Submitted 4/13; Revised 12/13; Published 6/14

Classifier Cascades and Trees for Minimizing Feature
Evaluation Cost

Zhixiang (Eddie) Xu xuzx@cse.wustl.edu
Matt J. Kusner mkusner@wustl.edu
Kilian Q. Weinberger kilian@wustl.edu
Department of Computer Science
Washington University
1 Brookings Drive
St. Louis, MO 63130, USA

Minmin Chen m.chen@criteo.com

Olivier Chapelle olivier@chapelle.cc

Criteo

411 High Street

Palo Alto, CA 94301, USA

Editor: Balazs Kegl

Abstract

Machine learning algorithms have successfully entered industry through many real-world
applications (e.g. , search engines and product recommendations). In these applications,
the test-time CPU cost must be budgeted and accounted for. In this paper, we examine
two main components of the test-time CPU cost, classifier evaluation cost and feature
extraction cost, and show how to balance these costs with the classifier accuracy. Since the
computation required for feature extraction dominates the test-time cost of a classifier in
these settings, we develop two algorithms to efficiently balance the performance with the
test-time cost. Our first contribution describes how to construct and optimize a tree of
classifiers, through which test inputs traverse along individual paths. Each path extracts
different features and is optimized for a specific sub-partition of the input space. Our
second contribution is a natural reduction of the tree of classifiers into a cascade. The
cascade is particularly useful for class-imbalanced data sets as the majority of instances
can be early-exited out of the cascade when the algorithm is sufficiently confident in its
prediction. Because both approaches only compute features for inputs that benefit from
them the most, we find our trained classifiers lead to high accuracies at a small fraction of
the computational cost.

Keywords: budgeted learning, resource efficient machine learning, feature cost sensitive
learning, web-search ranking, tree of classifiers

1. Introduction

In real-world machine learning applications, such as email-spam (Weinberger et al., 2009),
adult content filtering (Fleck et al., 1996), and web-search engines (Zheng et al., 2008;
Chapelle et al., 2011), managing the CPU cost at test-time becomes increasingly important.
In applications of such large scale, computation must be budgeted and accounted for.

c©2014 Zhixiang (Eddie) Xu, Matt Kusner, Kilian Q. Weinberger, Minmin Chen, Olivier Chapelle.

Xu, Kusner, Weinberger, Chen and Chapelle

cascade of classifiers tree of classifiers

�4�3�2�1
�1

�2

�3

�4

Figure 1: An illustration of two different techniques for learning under a test-time budget.
Circular nodes represent classifiers (with parameters β) and black squares pre-
dictions. The color of a classifier node indicates the number of inputs passing
through it (darker means more). Left: CSCC, a classifier cascade that optimizes
the average cost by rejecting easier inputs early. Right: CSTC, a tree that trains
expert leaf classifiers specialized on subsets of the input space.

Two main components contribute to the test-time cost. The time required to evaluate
a classifier and the time to extract features used by that classifier. Since the features
are often heterogeneous, extraction time for different features is highly variable. Imagine
introducing a new feature to a product recommendation system that requires 1 second to
extract per recommendation. If a web-service provides 100 million recommendations a day
(which is not uncommon), it would require 1200 extra CPU days to extract just this feature.
While this additional feature may increase the accuracy of the recommendation system, the
cost of computing it for every recommendation is prohibitive. This introduces the problem
of balancing the test-time cost and the classifier accuracy. Addressing this trade-off in a
principled manner is crucial for the applicability of machine learning.

A key observation for minimizing test-time cost is that not all inputs require the same
amount of computation to obtain a confident prediction. One celebrated example is face
detection in images, where the majority of all image regions do not contain faces and can
often be easily rejected based on the response of a few simple Haar features (Viola and Jones,
2004). A variety of algorithms utilize this insight by constructing a cascade of classifiers
(Viola and Jones, 2004; Lefakis and Fleuret, 2010; Saberian and Vasconcelos, 2010; Pujara
et al., 2011; Chen et al., 2012; Trapeznikov et al., 2013b). Each stage in the cascade can
reject an input or pass it on to a subsequent stage. These algorithms significantly reduce
the test-time complexity, particularly when the data is class-imbalanced, and few features
are needed to classify instances into a certain class, as in face detection.

Another observation is that it is not only possible that many inputs can be classified
correctly using a small subset of all features, but also, such subsets are likely to vary across
inputs. Particularly for the case in which data is not class-imbalanced it may be possible to
further lower the test-time cost by extracting fewer, more specialized features per input than
the features that would be extracted using a cascade of classifiers. In this paper, we provide
a detailed analysis of a new algorithm, Cost-Sensitive Tree of Classifiers (CSTC) (Xu et al.,

2114

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

2013a) that is derived based on this observation. CSTC minimizes an approximation of the
exact expected test-time cost required to predict an instance. An illustration of a CSTC
tree is shown in the right plot of Figure 1. Because the input space is partitioned by the
tree, different features are only extracted where they are most beneficial, and therefore,
the average test-time cost is reduced. Unlike prior approaches, which reduce the total cost
for every input (Efron et al., 2004) or which combine feature cost with mutual information
to select features (Dredze et al., 2007), a CSTC tree incorporates input-dependent feature
selection into training and dynamically allocates higher feature budgets for infrequently
traveled tree-paths.

CSTC incorporates two novelties: 1. it relaxes the expected per-instance test-time cost
into a well-behaved optimization; and 2. it is a generalization of cascades to trees. Full trees,
however, are not always necessary. In data scenarios with highly skewed class imbalance,
cascades might be a better model by rejecting many instances using a small number of
features. We therefore apply the same test-time cost derivation to a stage-wise classifier for
cascades. The resulting algorithm, Cost-Sensitive Cascade of Classifiers (CSCC), is shown
in the left plot of Figure 1. This algorithm supersedes an approach previously proposed,
Cronus (Chen et al., 2012), which is not derived through a formal relaxation of the test-
time cost, but performs a clever weighting scheme. We compare and contrast Cronus with
CSCC.

Two earlier short papers already introduce CSTC (Xu et al., 2013a) and Cronus (Chen
et al., 2012) algorithms, however the present manuscript provides significantly more de-
tailed analysis, experimental results and insightful discussion—and it introduces CSCC,
which combines insights from all prior work. The paper is organized as follows. Section 2
introduces and defines the test-time cost learning setting. Section 3 presents the tree of clas-
sifiers approach, CSTC. In Section 4 we lay out CSCC and relate it to prior work, Cronus,
(Chen et al., 2012). Section 5 introduces non-linear extensions to CSTC and CSCC. Sec-
tion 6 presents the experimental results on several data sets and discusses the performance
differences. Section 7 reviews the prior and related contributions that inspires our work.
We conclude in Section 8 by summarizing our contributions and proposing a few future
directions.

2. Test-Time Cost

There are several key aspects towards learning under test-time cost budgets that need to
be considered: 1. feature extraction cost is relevant and varies significantly across features;
2. features are extracted on-demand rather than prior to evaluation; 3. different features
can be extracted for different inputs; 4. the test cost is evaluated in average rather than
in absolute (/worst-case) terms (i.e. , several cheap classifications can free up budget for
an expensive classification). In this section we focus on learning a single cost-sensitive
classifier. We will combine these classifiers to form our tree and cascade algorithms in later
sections. We first introduce notation and our general setup, and then provide details on
how we address these specific aspects.

Let the data consist of inputs D = {x1, . . . ,xn} ⊂ Rd with corresponding class labels
{y1, . . . , yn} ⊆ Y, where Y = R in the case of regression (Y could also be a finite set of
categorical labels). We summarize all notation in Table 1.

2115

Xu, Kusner, Weinberger, Chen and Chapelle

xi Input instance i
yi Input label i
H Set of all weak learner t
H Linear classifier on input
β Parameters of linear classifier H
` Non-negative loss function over input
ρ Coefficient for regularization
λ Accuracy/cost trade-off parameter
cα Feature extraction cost of feature α
vk Classifier node k
θk Splitting threshold of node vk

pki Traversal probability to node vk of input xi
πl Set of classifier node along the path from root to vl

Table 1: Notation used throughout this manuscript.

2.1 Cost-Sensitive Loss Minimization

We learn a classifier H : Rd → Y, parameterized by β, to minimize a continuous, non-
negative loss function ` over D,

1

n
min
β

n∑
i=1

`(H(xi;β), yi).

We assume that H is a linear classifier, H(x;β) = β>x. To avoid overfitting, we deploy a
standard l1 regularization term, |β| to control model complexity. This regularization term
has the known side-effect to keep β sparse (Tibshirani, 1996), which requires us to only
evaluate a subset of all features. In addition, to balance the test-time cost incurred by the
classifier, we also incorporate the cost term c(β) described in the following section. The
combined test-time cost-sensitive optimization becomes

min
β

∑
i

`(x>i β, yi) + ρ|β|︸ ︷︷ ︸
regularized loss

+ λ c(β)︸︷︷︸
test-cost

, (1)

where λ is the accuracy/cost trade-off parameter, and ρ controls the strength of the regu-
larization.

2.2 Test-Time Cost

The test-time cost of H is regulated by the features extracted for that classifier. Different
from traditional settings, where all features are computed prior to the application of H, we
assume that features are computed on demand the first time they are used.

We denote the extraction cost for feature α as cα. The cost cα ≥ 0 is suffered at most
once, only for the initial extraction, as feature values can be cached for future use. For a
classifier H, parameterized by β, we can record the features used:

‖βα‖0 =

{
1 if feature α is used in H
0 otherwise.

(2)

2116

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

Here, ‖ · ‖0 denotes the l0 norm with ‖a‖0 = 1 if a 6= 0 and ‖a‖0 = 0 otherwise. With
this notation, we can formulate the total test-time cost required to evaluate a test input x
with classifier H (and parameters β) as

c(β) =
d∑

α=1

cα‖βα‖0. (3)

The equation (3) can be in any units of cost. For example in medical applications, the
feature extraction cost may be in units of “patient agony” or in “examination cost”. The
current formulation (1) with cost term (3) still extracts the same features for all inputs and
is NP-hard to optimize (Korte and Vygen, 2012, Chapter 15). We will address these issues
in the following sections.

3. Cost-Sensitive Tree of Classifiers

We introduce an algorithm that is inspired by the observation that many inputs could be
classified correctly based on only a small subset of all features, and this subset may vary
across inputs. Our algorithm employs a tree structure to extract particular features for
particular inputs, and we refer to it as the Cost-Sensitive Tree of Classifiers (CSTC). We
begin by introducing foundational concepts regarding the CSTC tree and derive a global
cost term that extends (3) to trees of classifiers and then we relax the resulting loss function
into a well-behaved optimization problem.

3.1 CSTC Nodes

The fundamental building block of the CSTC tree is a CSTC node—a linear classifier as
described in Section 2.1. Our classifier design is based on the assumption that instances
with similar labels tend to have similar features. Thus, we design our tree algorithm to
partition the input space based on classifier predictions. Intermediate classifiers determine
the path of instances through the tree and leaf classifiers become experts for a small subset
of the input space.

Correspondingly, there are two different nodes in a CSTC tree (depicted in Figure 2):
classifier nodes (white circles) and terminal elements (black squares). Each classifier node
vk is associated with a weight vector βk and a threshold θk. These classifier nodes branch
inputs by their threshold θk, sending inputs to their upper child if x>i β

k > θk, and to
their lower child otherwise. Terminal elements are “dummy” structures and are not real
classifiers. They return the predictions of their direct parent classifier nodes—essentially
functioning as a placeholder for an exit out of the tree. The tree structure may be a full
balanced binary tree of some depth (e.g., Figure 2), or can be pruned based on a validation
set. For simplicity, we assume at this point that nodes with terminal element children must
be leaf nodes (as depicted in the figure)—an assumption that we will relax later on.

During test-time, inputs traverse through the tree, starting from the root node v0. The
root node produces predictions x>i β

0 and sends the input xi along one of two different paths,
depending on whether x>i β

0>θ0. By repeatedly branching the test inputs, classifier nodes
sitting deeper in the tree only handle a small subset of all inputs and become specialized
towards that subset of the input space.

2117

Xu, Kusner, Weinberger, Chen and Chapelle

classifier
nodes

Cost-sensitive Tree (CSTC)

π7

π8

π9

π10

v0

v1

v3

v4

v5

v2

v6

terminal
element v7

v8

v9

v10

x�β0 > θ0

x�β0 ≤ θ0

(β1, θ1)

(β0, θ0)

(β2, θ2)

(β3, θ3)

(β4, θ4)

(β5, θ5)

(β6, θ6)

Figure 2: A schematic layout of a CSTC tree. Each node vk is associated with a weight
vector βk for prediction and a threshold θk to send instances to different parts
of the tree. We solve for βk and θk that best balance the accuracy/cost trade-off
for the whole tree. All paths of a CSTC tree are shown in color.

3.2 CSTC Loss

In this section, we discuss the loss and test-time cost of a CSTC tree. We then derive a
single global loss function over all nodes in the CSTC tree.

3.2.1 Soft Tree Traversal

As we described before, inputs are partitioned at each node during test-time, and we use
a hard threshold to achieve this partitioning. However, modeling a CSTC tree with hard
thresholds leads to a combinatorial optimization problem that is NP-hard (Korte and Vygen,
2012, Chapter 15). As a remedy, during training, we softly partition the inputs and assign
traversal probabilities p(vk|xi) to denote the likelihood of input xi traversing through node
vk. Every input xi traverses through the root, so we define p(v0|xi)=1 for all i. We define a
“sigmoidal” soft belief that an input xi will transition from classifier node vk with threshold
θk to its upper child vu as

p(vu|xi, vk) =
1

1 + exp(−(x>i β
k−θk))

. (4)

Let vk be a node with upper child vu and lower child vl. We can express the probabilities
of reaching nodes vu and vl recursively as p(vu|xi) = p(vu|xi, vk)p(vk|xi) and p(vl|xi) =[
1− p(vu|xi, vk)

]
p(vk|xi) respectively. Note that it follows immediately, that if Vd contains

2118

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

all nodes at tree-depth d, we have ∑
v∈Vd

p(v|x) = 1. (5)

In the following paragraphs we incorporate this probabilistic framework into the loss and
cost terms of (1) to obtain the corresponding expected tree loss and tree cost.

3.2.2 Expected Tree Loss

To obtain the expected tree loss, we sum over all nodes V in a CSTC tree and all inputs and
weight the loss `(·) of input xi at each node vk by the probability that the input reaches
vk, pki =p(vk|xi),

1

n

n∑
i=1

∑
vk∈V

pki `(x
>
i β

k, yi). (6)

This has two effects: 1. the local loss for each node focuses more on likely inputs; 2. the
global objective attributes more weight to classifiers that serve many inputs. Technically,
the prediction of the CSTC tree is made entirely by the terminal nodes (i.e. , the leaves),
and an obvious suggestion may be to only minimize their classification losses and leave the
interior nodes as “gates” without any predictive abilities. However, such a setup creates
local minima that send all inputs to the terminal node with the lowest initial error rate.
These local minima are hard to escape from and therefore we found it to be important
to minimize the loss for all nodes. Effectively, this forces a structure onto the tree that
similarly labeled inputs leave through similar leaves and achieves robustness by assigning
high loss to such pathological solutions.

3.2.3 Expected Tree Costs

The cost of a test input is the cumulative cost across all classifiers along its path through
the CSTC tree. Figure 2 illustrates an example of a CSTC tree with all paths highlighted
in color. Every test input must follow along exactly one of the paths from the root to a
terminal element. Let L denote the set of all terminal elements (e.g., in Figure 2 we have
L={v7, v8, v9, v10}), and for any vl∈L let πl denote the set of all classifier nodes along the
unique path from the root v0 before terminal element vl (e.g., π9 ={v0, v2, v5}).

For an input x, exiting through terminal node vl, a feature α needs to be extracted if
and only if at least one classifier along the path πl uses this feature. We extend the indicator
function defined in (2) accordingly:∥∥∥∥∥∥

∑
vj∈πl

∣∣βjα∣∣
∥∥∥∥∥∥

0

=

{
1 if feature α is used along path to terminal node vl

0 otherwise.
(7)

We can extend the cost term in (3) to capture the traversal cost from root to node vl as

cl=
∑
α

cα

∥∥∥∥∥ ∑
vj∈πl

|βjα|
∥∥∥∥∥

0

. (8)

2119

Xu, Kusner, Weinberger, Chen and Chapelle

Given an input xi, the expected cost is then E[cl|xi] =
∑

l∈L p(v
l|xi)cl. To approximate

the data distribution, we sample uniformly at random from our training set, i.e. , we set
p(xi) ≈ 1

n , and obtain the unconditional expected cost

E[cost] =

n∑
i=1

p(xi)
∑
l∈L

p(vl|xi)cl ≈
∑
l∈L

cl
n∑
i=1

p(vl|xi)
1

n︸ ︷︷ ︸
:=pl

=
∑
l∈L

clpl. (9)

Here, pl denotes the probability that a randomly picked training input exits the CSTC
tree through terminal node vl. We can combine (8), (9) with (6) and obtain the objective
function,

∑
vk∈V

(
1

n

n∑
i=1

pki `
k
i +ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

∑
α

cα

∥∥∥∥∥ ∑
vj∈πl

|βjα|
∥∥∥∥∥

0

︸ ︷︷ ︸

test-time cost

, (10)

where we use the abbreviations pki = p(vk|xi) and `ki = `(x>i β
k, yi).

3.3 Test-Cost Relaxation

The cost penalties in (10) are exact but difficult to optimize due to the discontinuity and
non-differentiability of the l0 norm. As a solution, throughout this paper we use the mixed-
norm relaxation of the l0 norm over sums,

∑
j

∥∥∥∥∥∑
i

|Aij |
∥∥∥∥∥

0

→
∑
j

√∑
i

(Aij)2, (11)

described by Kowalski (2009). Note that for a vector, this relaxes the l0 norm to the l1
norm, i.e. ,

∑
j ‖aj‖0→

∑
j

√
(aj)2 =

∑
j |aj |, recovering the commonly used approximation

to encourage sparsity. For matrices A, the mixed norm applies the l1 norm over rows and
the l2 norm over columns, thus encouraging a whole row to be all-zero or non-sparse. In
our case this has the natural interpretation to encourage re-use of features that are already
extracted along a path. Using the relaxation in (11) on the l0 norm in (10) gives the final
optimization problem:

min
β0,θ0,...,β|V |,θ|V |

∑
vk∈V

(
1

n

n∑
i=1

pki `
k
i +ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

[∑
α

cα

√∑
vj∈πl

(βjα)2

]
︸ ︷︷ ︸

test-time cost penalty

(12)

We can illustrate the fact that the mixed-norm encourages re-use of features with a simple
example. If two classifiers vk 6= vk

′
along a path πl use different features with identical

weight, i.e. , βkt = ε = βk
′
s and t 6= s, the test-time cost penalty along πl is

√
ε2 +
√
ε2 = 2ε.

However, if the two classifiers re-use the same feature, i.e. , t = s, the test-time cost penalty
reduces to

√
ε2 + ε2 =

√
2ε.

2120

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

3.4 Optimization

There are many techniques to minimize the objective in (12). We use block coordinate
descent, optimizing with respect to the parameters of a single classifier node vk at a time,
keeping all other parameters fixed. We perform a level order tree traversal, optimizing each
node in order: v1, v2, . . . , v|V |. To minimize (12) (up to a local minimum) with respect
to parameters βk, θk we use the lemma below to overcome the non-differentiability of the
square-root term (and l1 norm, which we can rewrite as |a| =

√
a2) resulting from the

l0-relaxation (11).

Lemma 1. Given a positive function g(x), the following holds:

√
g(x) = inf

z>0

1

2

[
g(x)

z
+ z

]
. (13)

It is straight-forward to see that z =
√
g(x) minimizes the function on the right hand side

and satisfies the equality, which leads to the proof of the lemma.

For each square-root or l1 term we 1) introduce an auxiliary variable (i.e., z above), 2)
substitute in (13), and 3) alternate between minimizing the objective in (12) with respect to
βk, θk and solving for the auxiliary variables. The former minimization is performed with
conjugate gradient descent and the latter can be computed efficiently in closed form. This
pattern of block-coordinate descent followed by a closed form minimization is repeated until
convergence. Note that the objective is guaranteed to converge to a fixed point because each
iteration decreases the objective function, which is bounded below by zero. In the following
subsection, we detail the block coordinate descent optimization technique. Lemma 1 is only
defined for strictly positive functions g(x). As we are performing function minimization, we
can reach cases where g(x) = 0 and Lemma 1 is ill defined. Thus, as a practical work-around,
we clamp values to zero once they are below a small threshold (10−4).

3.4.1 Optimization Details

For reproducibility, we describe the optimization in more detail. Readers not interested in
the exact procedure may skip to Section 3.5. As terminal nodes are only placeholders and
do not have their own parameters, we only focus on classifier nodes, which are depicted as
round circles in Figure 2.

Leaf Nodes. The optimization of leaf nodes (e.g. , v3, v4, v5, v6 in Fig. 2) is simpler
because there are no downstream dependencies. Let vk be such a classifier node with only a
single “dummy” terminal node vk

′
. During optimization of (12), we fix all other parameters

βj , θj of other nodes vj and the respective terms become constants. Therefore, we remove
all other paths, and only minimize over the path πk

′
from the root to terminal node vk

′
.

Even along the path πk
′

most terms become constant and the only non-constant parameter
is βk (the branching parameter θk can be set to −∞ because vk has only one child). We
color non-constant terms in the remaining function in blue below,

∑
i

pki `(φ(xi)
>βk, yi)+ρ|βk|+ λ pk

′

∑
α

cα

√
(βkα)2 +

∑
vj∈πk′\vk

(βjα)2

 , (14)

2121

Xu, Kusner, Weinberger, Chen and Chapelle

where S\b contain all of the elements in S except b. After identifying the non-constant terms,
we can apply Lemma 1, making (14) differentiable with respect to βkα. Let us define auxiliary
variables γα and ηα for 1 ≤ α ≤ d for the l1-regularization term and the test-time cost term.
Further, let us collect the constants in the test-time cost term ctest-time =

∑
vj∈πk′\vk(βjα)2.

Applying Lemma 1 results in the following substitutions:

∑
α

ρ|βkα| =
∑
α

ρ
√

(βkα)2 −→
∑
α

ρ
1

2

(
(βkα)2

γα
+ γα

)
,

∑
α

cα

√
(βkα)2 + ctest-time −→

∑
α

cα
1

2

(
(βkα)2 + ctest-time

ηα
+ ηα

)
. (15)

As a result, we obtain a differentiable objective function after making the above substitu-
tions. We can solve βk by alternately minimizing the obtained differentiable function w.r.t.
βk with γα, ηα fixed, and minimizing γα, ηα with βk fixed (i.e., minimizing ηα is equivalent
to setting ηα =

√
(βkα)2+ctest-time). Recall that θk does not require optimization as vk does

not further branch inputs.
It is straight-forward to show (Boyd and Vandenberghe, 2004, page 72), that the right

hand side of Lemma 1 is jointly convex in x and z, so as long as g(x) is a quadratic
function of x. Thus, if `(x>i β

k, yi) is the squared loss, the substituted objective function is
jointly convex in βk and in γα, ηα and therefore we can obtain a globally-optimal solution.
Moreover, we can solve βk in closed form. Let us define three design matrices

Xiα= [xi]α, Ωii= pki , Γαα=
ρ

γα
+ λ

(pkcα
ηα

)
,

where Ω and Γ are both diagonal and [xi]α is the α feature of instance xi. The closed-form
solution for βk is as follows,

βk = (X>ΩX + Γ)−1X>Ωy. (16)

Intermediate Nodes. We further generalize this approach to all classifier nodes. As
before, we optimize one node at a time, fixing the parameters of all other nodes. However,
optimizing the parameters βk, θk of an internal node vk, which has two children affects the
parameters of descendant nodes. This affects the optimization of the regularized classifier
loss and the test-time cost separately. We state how these terms in the global objective (12)
are affected, and then show how to minimize it.

Let S be the set containing all descendant nodes of vk. Changes to the parameters βk, θk

will affect the traversal probabilities pji for all vj ∈ S and therefore enter the downstream loss
functions. We first state the regularized loss part of (12) and once again color non-constant
parameters in blue,

1

n

∑
i

pki `(x
>
i β

k, yi) +
1

n

∑
vj∈S

∑
i

pji `(x
>
i β

j , yi) + ρ|βk|. (17)

For the cost terms in (12), recall that the cost of each path πl is weighted by the
probability pl of traversing that path. Changes to βk, θk affect the probability of any path

2122

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

Algorithm 1 CSTC global optimization

Input: data {xi, yi} ∈ Rd ×R, initialized CSTC tree
repeat

for k = 1 to N = # CSTC nodes do
repeat

Solve for γ, η (fix βk, θk) using left hand side of (15)
Solve for βk, θk (fix γ, η) with conjugate gradient descent, or in closed-form

until objective changes less than ε
end for

until objective changes less than ε

that passes through vk and its corresponding probability pl. Let P be the terminal elements
associated with paths passing through vk. We state the cost function with non-constant
parameters in blue,

∑
vl∈P

pl

∑
α

cα

√√√√(∑
vj∈πl\vk

(βjα)2 + (βkα)2

)
︸ ︷︷ ︸

test-time cost

(18)

Adding (17) and (18), with the latter weighted by λ, gives the internal node loss.
To make the combined objective function differentiable we apply Lemma 1 to the l1-
regularization, and test-time cost terms and introduce auxiliary variables γα, ηα as in (15).
Similar to the leaf node case, we solve βk, θk by alternately minimizing the new objective
w.r.t. βk, θk with γα, ηα fixed, and minimizing γα, ηα with fixed βk, θk. Unlike leaf nodes,
optimizing the objective function w.r.t. βk, θk cannot be expressed in closed form even
with squared loss. Therefore, we optimize it with conjugate gradient descent. Algorithm 1
describes how the entire CSTC tree is optimized.

3.4.2 Node Initialization

The minimization of (12) is non-convex and is therefore initialization dependent. However,
minimizing (12) with respect to the parameters of leaf classifiers is convex. We therefore
initialize the tree top-to-bottom, starting at v0, and optimizing over βk by minimizing (12)
while considering all descendant nodes of vk as “cut-off” (thus pretending node vk is a leaf).
This initialization is also very fast in the case of a quadratic loss, as it can be solved for in
closed form.

3.5 Fine-Tuning

The original test-time cost term in (3) sums over the cost of all features that are extracted
during test-time. The relaxation in (11) makes the exact l0 cost differentiable and is still well
suited to select which features to extract. However, the mixed-norm does also impact the
performance of the classifiers, because (different from the l0 norm) larger weights in β incur
larger cost penalties. We therefore introduce a post-processing step to correct the classifiers
from this unwanted regularization effect. We re-optimize the loss of all leaf classifiers (i.e.

2123

Xu, Kusner, Weinberger, Chen and Chapelle

0

-0.05

-0.06

2
3

1

0

best
potential

node

classifier
node

potential
node

change in
NDCG

iteration
Finish

Start

+0.11

+0.02

+0.67

Figure 3: A schematic layout of the greedy tree building algorithm. Each iteration we add
the best performing potential node (dashed, above) to the tree. Each potential
node is annotated by the improvement in validation-NDCG, obtained with its
inclusion (number inside the circle). In this example, after two iterations no more
nodes improve the NDCG and the algorithm terminates, converting all remaining
potential nodes into terminal elements (black boxes).

, classifiers that make final predictions), while clamping all features with zero-weight to
strictly remain zero.

min
β̄
k

∑
i

pki `(x
>
i β̄

k
, yi) + ρ|β̄k|

subject to: β̄kt = 0 if βkt = 0.

Here, we do not include the cost-term, because the decision regarding which features to use

is already made. The final CSTC tree uses these re-optimized weight vectors β̄
k

for all leaf
classifier nodes vk.

3.6 Determining the Tree Structure

As the CSTC tree does not need to be balanced, its structure is an implicit parameter of
the algorithm. We learn and fix the tree structure prior to the optimization and fine-tuning
steps in Sections 3.4 and 3.5. We discuss two approaches to determine the structure of
the tree in the absence of prior knowledge, the first prunes a balanced tree bottom-up, the
second adds nodes top-down, only when necessary. In practice, both techniques produce
similar results and we settled on using the pruning technique for all of our experiments.

3.6.1 Tree Pruning

We build a full (balanced) CSTC tree of depth d and initialize all nodes. To obtain a more
compact model and to avoid over-fitting, the CSTC tree can be pruned with the help of
a validation set. We compute the validation error of the initialized CSTC tree at each
node. Starting with the leaf nodes, we then prune away nodes that, upon removal, do not
decrease the validation performance (in the case of ranking data, we even can use validation
NDCG (Järvelin and Kekäläinen, 2002) as our pruning criterion). After pruning, the tree
structure is fixed and all nodes are optimized with the procedure described in Section 3.4.1.

2124

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

3.6.2 Greedy Tree Building

In contrast to the bottom-up pruning, we can also use a top-down approach to construct
the tree structure. Figure 3 illustrates our greedy heuristic for CSTC tree construction. In
each iteration, we add the child node that improves the validation criteria (e.g., NDCG)
the most on the validation set.

More formally, we distinguish between CSTC classifier nodes and potential nodes. Po-
tential nodes (dotted circles in Figure 3) can turn into classifier nodes or terminal elements.
Each potential node is initially a trained classifier and annotated with the NDCG value
that the CSTC tree would reach on validation with its inclusion. At iteration 0 we learn a
single CSTC node by minimizing (12) for the root node v0, and make it a potential node. At
iteration i > 0 we pick the potential node whose inclusion improves the validation NDCG
the most (depicted as the dotted green circle) and add it to the tree. Then we create two
new potential nodes as its children, and initialize their classifiers by minimizing (12) with all
other weight-vectors and thresholds fixed. The splitting threshold θk is set to move 50% of
the validation inputs to the upper child (the thresholds will be re-optimized subsequently).
This procedure continues until no more potential nodes improve the validation NDCG, and
we convert all remaining potential nodes into terminal elements.

4. Cost-Sensitive Cascade of Classifiers

Many real world applications have data distributions with high class imbalance. One exam-
ple is face detection, where the vast majority of all image patches does not contain faces;
another example is web-search ranking, where almost all web-pages are irrelevant to a given
query. Often, a few features may suffice to detect that an image does not contain a face
or that a web-page is irrelevant. Further, in applications such as web-search ranking, the
accuracy of bottom ranked instances is irrelevant as long as they are not retrieved at the
top (and therefore are not displayed to the end user).

In these settings, the entire focus of the algorithm should be on the most confident
positive samples. Sub-trees that lead to only negative predictions, can be pruned effectively
as there is no value in providing fine-grained differentiation between negative samples. This
further reduces the average feature cost, as negative inputs traverse through shorter paths
and require fewer features to be extracted. Previous work obtains these unbalanced trees
by explicitly learning cascade structured classifiers (Viola and Jones, 2004; Dundar and
Bi, 2007; Lefakis and Fleuret, 2010; Saberian and Vasconcelos, 2010; Chen et al., 2012;
Trapeznikov et al., 2013b; Trapeznikov and Saligrama, 2013a). CSTC can incorporate
cascades naturally as a special case, in which the tree of classifiers has only a single node
per level of depth. However, further modifications can be made to accommodate the specifics
of these settings. We introduce two changes to the learning algorithm:

• Inputs of different classes are re-weighted to account for the severe class imbalance.

• Every classifier node vk has a terminal element as child and is weighted by the prob-
ability of exiting rather than the probability of traversing through node vk.

We refer to the modified algorithm as Cost-Sensitive Cascade of Classifiers (CSCC). An
example cascade is illustrated in Figure 4. A CSCC with K-stages is defined by a set of

2125

Xu, Kusner, Weinberger, Chen and Chapelle

Cost-sensitive Cascade (CSCC)

terminal elements
early-exit

classifier
nodes

v1 v3 v5

v7

terminal element

v2 v4 v6v0

(β0, θ0) (β2, θ2) (β4, θ4) (β6, θ6)

x�β0 ≤ θ0

x�β0 > θ0

Figure 4: Schematic layout of our classifier cascade with four classifier nodes. All paths are
colored in different colors.

weight vectors βk and thresholds θk, C = {(β1, θ1), (β2, θ2), · · · , (βK ,−)}. An input is
early-exited from the cascade at node vk if x>βk <θk and is sent to its terminal element
vk+1. Otherwise, the input is sent to the next classifier node. At the final node vK a
prediction is made for all remaining inputs via x>βK .

In CSTC, most classifier nodes are internal and branch inputs. As such, the predictions
need to be similarly accurate for all inputs to ensure that they are passed on to the correct
part of the tree. In CSCC, each classifier node early-exits a fraction of its inputs, providing
their final prediction. As mistakes of such exiting inputs are irreversible, the classifier needs
to ensure particularly low error rates for this fraction of inputs. All other inputs are passed
down the chain to later nodes. This key insight inspires us to modify the loss function of
CSCC from the original CSTC formulation in (6). Instead of weighting the contribution
of classifier loss `(x>i β

k, yi) by pki , the probability of input xi traversing through node vk,
we weight it with pk+1

i , the probability of exiting through terminal node vk+1. As a second
modification, we introduce an optional class-weight wyi > 0 which absorbs some of the
impact of the class imbalance. The resulting loss becomes:

1

n

n∑
i=1

∑
vk∈V

wyip
k+1
i `(x>i β

k, yi).

The cost term is unchanged and the combined cost-sensitive loss function of CSCC becomes

∑
vk∈V

1

n

(
n∑
i=1

wyip
k+1
i `ki

)
+ ρ|βk|︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

 d∑
α=1

cα

√∑
vj∈πl

(βjα)2

︸ ︷︷ ︸

feature cost penalty

. (19)

We optimize (19) using the same block coordinate descent optimization described in Sec-
tion 3.4. Similar as before, we initialize the cascade from left to right, while assuming the
currently initialized node is the last node.

2126

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

4.1 Cronus

CSCC supersedes previous work on cost sensitive learning of cascades by the same authors,
Chen et al. (2012). The previous algorithm, named Cronus, shares the same loss terms as
CSCC, however the feature and evaluation cost of each node is weighted by the expected
number of inputs, pk, within the mixed-norm (highlighted in color):

∑
vk∈V

1

n

(
n∑
i=1

wyip
k+1
i `ki

)
+ ρ|βk|︸ ︷︷ ︸

regularized loss

+λ
d∑

α=1

cα

√∑
vk∈V

(pkβkα)2

︸ ︷︷ ︸
feature cost penalty

.

In contrast, CSCC in (19) sums over the weighted cost of all exit paths. The two formu-
lations are similar, but CSCC may be considered more principled as it is derived from the
exact expected cost of the cascade. As we show in Section 6, this does translate into better
empirical accuracy/cost trade-offs.

5. Extension to Non-Linear Classifiers

Although CSTC’s decision boundary may be non-linear, each individual node classifier is
linear. For many problems this may be too restrictive and insufficient to divide the input
space effectively. In order to allow non-linear decision boundaries we map the input into a
more expressive feature space with the “boosting trick” (Friedman, 2001; Chapelle et al.,
2011), prior to our optimization. In particular, we first train gradient boosted regression
trees with a squared loss penalty for T iterations and obtain a classifier H ′(xi)=

∑T
t=1 ht(xi),

where each function ht(·) is a limited-depth CART tree (Breiman, 1984). We then define
the mapping φ(xi) = [h1(xi), . . . , hT (xi)]

> and apply it to all inputs. The boosting trick
is particularly well suited for our feature cost sensitive setting, as each CART tree only
uses a small number of features. Nevertheless, this pre-processing step does affect the loss
function in two ways: 1. the feature extraction now happens within the CART trees; and
2. the evaluation time of the CART trees needs to be taken into account.

5.1 Feature Cost After the Boosting Trick

After the transformation xi → φ(xi), each input is T−dimensional and consequently, we
have the weight vectors β ∈ RT . To incorporate the feature extraction cost into our loss,
we define an auxiliary matrix F∈ {0, 1}d×T with Fαt = 1 if and only if the CART tree ht
uses feature fα. With this notation, we can incorporate the CART-trees into the original
feature extraction cost term for a weight vector β, as stated in (3). The new formulation
and its relaxed version, following the mixed-norm relaxation as stated in (11), are then:

d∑
α=1

cα

∥∥∥∥∥
T∑
t=1

|Fαtβt|
∥∥∥∥∥

0

−→
d∑

α=1

cα

√√√√ T∑
t=1

(Fαtβt)2.

The non-negative sum inside the l0 norm is non-zero if and only if feature α is used by at
least one tree with non-zero weight, i.e. , |βt| > 0. Similar to a single classifier, we can also

2127

Xu, Kusner, Weinberger, Chen and Chapelle

adapt the feature extraction cost of the path through a CSTC tree, originally defined in
(8), which becomes:

d∑
α=1

cα

∥∥∥∥∥ ∑
vj∈πl

T∑
t=1

|Fαtβjt |
∥∥∥∥∥

0

−→
d∑

α=1

cα

√√√√∑
vj∈πl

T∑
t=1

(Fαtβ
j
t)

2. (20)

5.2 CART Evaluation Cost

The evaluation of a CART tree may be non-trivial or comparable to the cost of feature
extraction and its cost must be accounted for. We define a constant et ≥ 0, which captures
the cost of the evaluation of the tth CART tree. We can express this evaluation cost for
a single classifier with weight vector β in terms of the l0 norm and again apply the mixed
norm relaxation (11). The exact (left term) and relaxed evaluation cost penalty (right term)
can be stated as follows:

T∑
t=1

et‖βt‖0 −→
T∑
t=1

et|βt|

The left term incurs a cost of et for each tree ht if and only if it is assigned a non-zero
weight by the classifier, i.e. , βt 6= 0. Similar to feature values, we assume that CART tree
evaluations can be cached and only incur a cost once (the first time they are computed).
With this assumption, we can express the exact and relaxed CART evaluation cost along a
path πl in a CSTC tree as

T∑
t=1

et

∥∥∥∥ ∑
vj∈πl

|βjt |
∥∥∥∥

0

−→
T∑
t=1

et

√∑
vj∈πl

(βjt)
2. (21)

It is worth pointing out, that (21) is analogous to the feature extraction cost with linear
classifiers (8) and its relaxation, as stated in (12).

5.3 CSTC and CSCC with Non-Linear Classifiers

We can integrate the two CART tree aware cost terms (20) and (21) into the optimization
problem in (12). The final objective of the CSTC tree after the “boosting trick” becomes
then

∑
vk∈V

(
1

n

n∑
i=1

pki `
k
i +ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

[∑
t

et

√∑
vj∈πl

(βjt)
2

︸ ︷︷ ︸
CART evaluation cost penalty

+

d∑
α=1

cα

√√√√∑
vj∈πl

T∑
t=1

(Fαtβ
j
t)

2

︸ ︷︷ ︸
feature cost penalty

]
. (22)

The objective in (22) can be optimized with the same block coordinate descent algorithm,
as described in Section 3.4. Similarly, the CSCC loss function with non-linear classifiers
becomes

∑
vk∈V

1

n

(
n∑
i=1

wyip
k+1
i `ki

)
+ ρ|βk|︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

[∑
t

et

√∑
vj∈πl

(βjt)
2

︸ ︷︷ ︸
evaluation cost

+

d∑
α=1

cα

√√√√∑
vj∈πl

T∑
t=1

(Fαtβ
j
t)

2

︸ ︷︷ ︸
feature cost

]
.

2128

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

In the same way, Cronus may be adapted for non-linear classification (see: Chen et al., 2012).
To avoid over-fitting, we use validation set to perform early-stopping during optimizing
objective function 22.

6. Results

In this section, we evaluate CSTC on a synthetic cost-sensitive learning task and compare
it with competing algorithms on two large-scale, real world benchmark problems. Addi-
tionally, we discuss the differences between our models for several learning settings. We
provide further insight by analyzing the features extracted on a these data sets and looking
at how CSTC tree partitions the input space. We judge the effect of the cost-sensitive
regularization by looking at how removing terms and varying parameters affects CSTC on
real world data sets. We also present detailed results of CSTC on a cost-sensitive version
of the MNIST data set, demonstrating that it extracts intelligent per-instance features. We
end by proposing a criterion that is designed to judge if CSTC will perform well on a data
set.

6.1 Synthetic Data

We construct a synthetic regression data set consisting of points sampled from the four
quadrants of the X,Z-plane, where X=Z∈ [−1, 1]. The features belong to two categories:
cheap features: sign(x), sign(z) with cost c=1, which can be used to identify the quadrant
of an input; and expensive features: z++, z+−, z−+, z−− with cost c= 10, which equal the
exact label of an input if it is from the corresponding quadrant (or a random number
otherwise). Since in this synthetic data set we do not transform the feature space, we have
φ(x) = x, and F (the weak learner feature-usage variable) is the 6×6 identity matrix. By
design, a perfect classifier can use the two cheap features to identify the sub-region of an
instance and then extract the correct expensive feature to make a perfect prediction. The
minimum feature cost of such a perfect classifier is exactly c=12 per instance. We construct
the data set to be a regression problem, with labels sampled from Gaussian distributions
with quadrant-specific means µ++, µ−+, µ+−, µ−− and variance 1. The individual values
for the label means are picked to satisfy the CSTC assumption, i.e. , that the prediction of
similar labels requires similar features. In particular, as can be seen in Figure 5 (top left),
label means from quadrants with negative z−coordinates (µ+−, µ−−) are higher than those
with positive z−coordinates (µ++, µ−+).

Figure 5 shows the raw data (top left) and a CSTC tree trained on this data with its
predictions of test inputs made by each node. The semi-transparent gray hyperplane shows
the values of thresholds, θ, and vertical gray lines show the difference between predicted
label and true label, for each instance. In general, in every path along the tree, the first two
classifiers split on the two cheap features and identify the correct sub-region of the input.
The leaf classifiers extract a single expensive feature to predict the labels. As such, the
mean squared error of the training and testing data both approach 0 (and the gray lines
vanish) at optimal cost c = 12.

2129

Xu, Kusner, Weinberger, Chen and Chapelle

P
re

di
ct

io
ns

P
re

di
ct

io
ns

P
re

di
ct

io
ns

P
re

di
ct

io
ns

P
re

di
ct

io
ns

P
re

di
ct

io
ns

P
re

di
ct

io
ns

Tr
ue

 L
ab

el

X

X

X

X

Z

Z

Z

Z

Feature Vector: [0, 0, 0, 0, -5.27, 0]
Feature Cost: [10, 10, 10, 10, 1, 1]

Features: [a, b, c, d, sign(X), sign(Z)]
Feature Vector: [0, 0, 0, 0, 0, -9.64]
Feature Cost: [10, 10, 10, 10, 1, 1]

Feature Vector: [0, 0, 0, 0, 0.83, 0]
Feature Cost: [10, 10, 10, 10, 1, 1]

Feature Vector: [0, 0, 1, 0, 0, 0]
Feature Cost: [10, 10, 10, 10, 1, 1]

Feature Vector: [1, 0, 0, 0, 0, 0]
Feature Cost: [10, 10, 10, 10, 1, 1]

Feature Vector: [0, 1, 0, 0, 0, 0]
Feature Cost: [10, 10, 10, 10, 1, 1]

Feature Vector: [0, 0, 0, 1, 0, 0]
Feature Cost: [10, 10, 10, 10, 1, 1]

X

Z True labelTrue label

dataset

X

Z

X
Z

X
Z

Weight Vector:

Weight Vector:

Weight Vector:

Weight Vector:

Weight Vector:

Weight Vector:

Weight Vector:

Figure 5: CSTC on synthetic data. The box at left describes the data set. The rest of
the figure shows the trained CSTC tree. At each node we show a plot of the
predictions made by that classifier and the feature weight vector. The tree obtains
a perfect (0%) test-error at the optimal cost of 12 units.

6.2 Yahoo! Learning to Rank

To evaluate the performance of CSTC on real-world tasks, we test it on the Yahoo! Learning
to Rank Challenge (LTR) data set. The set contains 19,944 queries and 473,134 documents.
Each query-document pair xi consists of 519 features. An extraction cost, which takes on
a value in the set {1, 5, 20, 50, 100, 150, 200}, is associated with each feature.1 The unit of
these values turns out to be approximately the number of weak learner evaluations ht(·)
that can be performed while the feature is being extracted. The label yi ∈ {4, 3, 2, 1, 0}
denotes the relevancy of a document to its corresponding query, with 4 indicating a perfect
match. We measure the performance using normalized discounted cumulative gain at the
5th position (NDCG@5) (Järvelin and Kekäläinen, 2002), a preferred ranking metric when
multiple levels of relevance are available. Let π be an ordering of all inputs associated with
a particular query (π(r) is the index of the rth ranked document and yπ(r) is its relevance
label), then the NDCG of π at position P is defined as

NDCG@P (π) =
DCG@P (π)

DCG@P (π∗)
with DCG@P (π) =

P∑
r=1

2yπ(r) − 1

log2(r + 1)
,

where π∗ is an optimal ranking (i.e. , documents are sorted in decreasing order of relevance).
To introduce non-linearity, we transform the input features into a non-linear feature space
x → φ(x) with the boosting trick (see Section 5) with T = 3000 iterations of gradient
boosting and CART trees of maximum depth 4. Unless otherwise stated, we determine the
CSTC depth by validation performance (with a maximum depth of 10).

1. The extraction costs were provided by a Yahoo! employee.

2130

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

0 0.5 1 1.5 2
x 104

0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

Stage−wise regression (Friedman, 2001)
Single cost−sensitive classifier
Early exit s=0.2 (Cambazoglu et. al. 2010)
Early exit s=0.3 (Cambazoglu et. al. 2010)
Early exit s=0.5 (Cambazoglu et. al. 2010)
Cronus optimized (Chen et. al. 2012)
CSTC w/o fine−tuning
CSTC

N
D

C
G

 @
 5

Cost 104

Figure 6: The test ranking accuracy (NDCG@5) and cost of various cost-sensitive classifiers.
CSTC maintains its high retrieval accuracy significantly longer as the cost-budget
is reduced.

Figure 6 shows a comparison of CSTC with several recent algorithms for test-time
budgeted learning. We show NDCG versus cost (in units of weak learner evaluations). We
obtain the curves of CSTC by varying the accuracy/cost trade-off parameter λ (and perform
early stopping based on the validation data, for fine-tuning). For CSTC we evaluate eight
settings, λ = {1

3 ,
1
2 , 1, 2, 3, 4, 5, 6}. In the case of stage-wise regression, which is not cost-

sensitive, the curve is simply a function of boosting iterations. We include CSTC with and
without fine-tuning. The comparison shows that there is a small but consistent benefit to
fine-tuning the weights as described in Section 3.5.

For competing algorithms, we include Early exit (Cambazoglu et al., 2010) which im-
proves upon stage-wise regression by short-circuiting the evaluation of unpromising docu-
ments at test-time, reducing the overall test-time cost. The authors propose several criteria
for rejecting inputs early and we use the best-performing method “early exits using proxim-
ity threshold”, where at the ith early-exit, we remove all test-inputs that have a score that is
at least 300−i

299 s lower than the fifth best input, and s determines the power of the early-exit.
The single cost-sensitive classifier is a trivial CSTC tree consisting of only the root node
i.e. , a cost-sensitive classifier without the tree structure. We also include Cronus, which
is described in Section 4. We set the maximum number of Cronus nodes to 10, and set all
other parameters (e.g., keep ratio, discount, early-stopping) based on a validation set. As
shown in the graph, both Cronus and CSTC improve the cost/accuracy trade-off curve over
all other algorithms. The power of Early exit is limited in this case as the test-time cost is
dominated by feature extraction, rather than the evaluation cost. Compared with Cronus,
CSTC has the ability to identify features that are most beneficial to different groups of in-
puts. It is this ability, which allows CSTC to maintain the high NDCG significantly longer

2131

Xu, Kusner, Weinberger, Chen and Chapelle

Pr
ec
is
io
n@

5

0 0.5 1 1.5 2
x 104

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Stage wise regression (Friedman, 2001)
Early exit s=0.2 (Cambazoglu et. al. 2010)
Early exit s=0.3 (Cambazoglu et. al. 2010)
Early exit s=0.3 (Cambazoglu et. al. 2010)
AdaBoostRS_AC (Reyzin, 2011)
AND OR (Dundar and Bi, 2007)
Cronus (Chen et. al 2012)
CSTC
CSCC

Cost

0.145

Figure 7: The test ranking accuracy (Precision@5) and cost of various budgeted cascade
classifiers on the Skew-LTR data set with high class imbalance. CSCC outper-
forms similar techniques, requiring less cost to achieve the same performance.

as the cost-budget is reduced. It is interesting to observe that the single cost-sensitive clas-
sifier outperforms stage-wise regression (due to the cost sensitive regularization) but obtains
much worse cost/accuracy trade offs than the full CSTC tree. This demonstrates that the
tree structure is indeed an important part of the high cost effectiveness of CSTC.

6.3 Yahoo! Learning to Rank: Skewed, Binary

To evaluate the performance of our cascade approach CSCC, we construct a highly class-
skewed binary data set using the Yahoo! LTR data set. We define inputs having labels
yi ≥ 3 as ‘relevant’ and label the rest as ‘irrelevant’, binarizing the data in this way. We
also replicate each negative, irrelevant example 10 times to simulate the scenario where
only a few documents are highly relevant, out of many candidate documents. After these
modifications, the inputs have one of two labels {−1, 1}, and the ratio of +1 to −1 is
1/100. We call this data set LTR-Skewed. This simulates an important setting, as in many
time-sensitive real life applications the class distributions are often very skewed.

For the binary case, we use the ranking metric Precision@5 (the fraction of top 5 doc-
uments retrieved that are relevant to a query). It best reflects the capability of a classifier
to precisely retrieve a small number of relevant instances within a large set of irrelevant
documents. Figure 7 compares CSCC and Cronus with several recent algorithms for binary
budgeted learning. We show Precision@5 versus cost (in units of weak learner evaluations).
Similar to CSTC, we obtain the curves of CSCC by varying the accuracy/cost trade-off
parameter λ. For CSCC we evaluate eight settings, λ={1

3 ,
1
2 , 1, 2, 3, 4, 5, 6}.

For competing algorithms, in addition to Early exit (Cambazoglu et al., 2010) described
above, we also include AND-OR proposed by Dundar and Bi (2007), which is designed
specifically for binary budgeted learning. They formulate a global optimization of a cas-

2132

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e

U
se

d

c=1 (123)
c=5 (31)
c=20 (191)
c=50 (125)
c=100 (16)
c=150 (32)
c=200 (1)

Tree Depth
Cost

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e

U
se

d

Yahoo Learning To Rank
Cronus cascadeCSTC tree

v0

v1

v2

v3

v4

v5

v6

v7

v9

v11

v13

v14 v29

CSTC pruned tree structure

cascade nodestree depth

P
ro

po
rti

on
 o

f F
ea

tu
re

s

P
ro

po
rti

on
 o

f F
ea

tu
re

s

Figure 8: Left: The pruned CSTC tree, trained on the Yahoo! LTR data set. The ratio of
features, grouped by cost, are shown for CSTC (center) and Cronus (right). The
number of features in each cost group is indicated in parentheses in the legend.
More expensive features (c ≥ 20) are gradually extracted deeper in the structure
of each algorithm.

cade of classifiers and employ an AND-OR scheme with the loss function that treats negative
inputs and positive inputs separately. This setup is based on the insight that positive in-
puts are carried all the way through the cascade (i.e. , each classifier must classify them
as positive), whereas negative inputs can be rejected at any time (i.e. , it is sufficient if a
single classifier classifies them as negative). The loss for positive inputs is the maximum
loss across all stages, which corresponds to the AND operation, and encourages all classi-
fiers to make correct predictions. For negative inputs the loss is the minimum loss of all
classifiers, which corresponds to the OR operation, and which enforces that at least one
classifier makes a correct prediction. Different from our approach, their algorithm requires
pre-assigning features to each node. We therefore use five nodes in total, assigning fea-
tures of cost ≤ 5,≤ 20,≤ 50,≤ 150,≤ 200. The curve is generated by varying a loss/cost
trade-off parameter (similar to λ). Finally, we also compare with the cost sensitive ver-
sion of AdaboostRS (Reyzin, 2011). This algorithm resamples decision trees, learned with
AdaBoost (Freund et al., 1999), inversely proportional to a tree’s feature cost. As this algo-
rithm involves random sampling, we averaged over 10 runs and show the standard deviations
in both precision and cost.

As shown in the graph, AdaBoostRS obtains lower precision than other algorithms. This
may be due to the known sensitivity of AdaBoost towards noisy data, (Melville et al., 2004).
AND-OR also under-performs. It requires pre-assigning features prior to training, which
makes it impossible to obtain high precision at a low cost. On the other hand, Cronus,
CSCC, and CSTC have the ability to cherry pick good but expensive features at an early
node, which in turn can reduce the overall cost while improving performance over other
algorithms. We take a closer look at this effect in the following section. Cronus and CSCC
in general outperform CSTC because they can exit a large portion of the data set early
on. As mentioned before, CSCC outperforms Cronus a little bit, which we attribute to the
more principled optimization.

2133

Xu, Kusner, Weinberger, Chen and Chapelle

Yahoo Learning To Rank, Skewed Binary

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e

U
se

d

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e

U
se

d

c=1 (123)
c=5 (31)
c=20 (191)
c=50 (125)
c=100 (16)
c=150 (32)
c=200 (1)

P
ro

po
rti

on
 o

f F
ea

tu
re

s

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e

U
se

d
P

ro
po

rti
on

 o
f F

ea
tu

re
s

Cronus cascadeAND-OR cascade

AND-OR nodes Cronus nodes
1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e

U
se

d

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e

U
se

d

CSCC

P
ro

po
rti

on
 o

f F
ea

tu
re

s

CSCC nodes

Figure 9: The ratio of features, grouped by cost, that are extracted at different depths of
CSCC (left), AND-OR (center) and Cronus (right). The number of features in
each cost group is indicated in parentheses in the legend.

6.4 Feature Extraction

Based on the LTR and LTR-Skewed data sets, we investigate the features extracted by
various algorithms in each scenario. We fist show the features retrieved in the regular
balanced class data set (LTR). Figure 8 (left) shows the pruned CSTC tree learned on the
LTR data set. The plot in the center demonstrates the fraction of features, with a particular
cost, extracted at different depths of the CSTC tree. The rightmost plot shows the features
extracted at different nodes of Cronus. We observe a general trend that for both CSTC and
Cronus, as depth increases, more features are being used. However, cheap features (c ≤ 5)
are all extracted early-on, whereas expensive features (c ≥ 20) are extracted by classifiers
sitting deeper in the tree. Here, individual classifiers only cope with a small subset of
inputs and the expensive features are used to classify these subsets more precisely. The
only feature that has cost 200 is extracted at all depths—which seems essential to obtain
high NDCG (Chen et al., 2012). Although Cronus has larger depth than CSTC (10 vs 4),
most nodes in Cronus are basically dummy nodes (as can be seen by the flat parts of the
feature usage curve). For these nodes all weights are zeros, and the threshold is a very small
negative number, allowing all inputs to pass through.

In the second scenario, where the class-labels are binarized and are highly skewed (LTR-
Skewed), we compare the features extracted by CSCC, Cronus and AND-OR. For a fair
comparison, we set the trade-off parameter λ for each algorithm to achieve similar precision
0.135 ± 0.001. We also set the maximum number of nodes of CSCC and Cronus to 10.
Figure 9 (left) shows the fraction of features, with a particular cost, extracted at different
nodes of the CSCC. The center plot illustrates the features used by AND-OR, and the right
plot shows the features extracted at different nodes of Cronus. Note that while the features
are pre-assigned in the AND-OR algorithm, it still has the ability to only use some of the
assigned features at each node. In general, all algorithms use more features as the depth
increases. However, compared to AND-OR, both Cronus and CSCC can cherry pick some
good but expensive features early-on to achieve high accuracy at a low cost. Some of the
expensive features (e.g., c = 100, 150) are extracted from the very first node in CSCC and
Cronus, whereas in AND-OR, they are only available at the fourth node. This ability is

2134

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

Predictive Node Classifier Similarity

1.00 0.85

1.00

1.00

1.00

0.85

0.81

0.81 0.76

0.76

0.90

0.90

0.83

0.83

0.88

0.88

0.64

0.72

0.75

0.84

0.72 0.75 0.84 1.000.64

v
3

v
4

v
5

v
6

v6v5v4v3

v
1
4

v14

v0

v1

v3

1.23

1.67

0.56

0.36

0.84

2.02

1.39

v7

v9

v13

v29

v5

1.13

v11

CSTC Tree

v2

v4

v6

v14

Figure 10: (Left) The pruned CSTC-tree generated from the Yahoo! Learning to Rank data
set. (Right) Jaccard similarity coefficient between classifiers within the learned
CSTC tree.

one of the reasons that CSCC and Cronus achieve better performance over existing cascade
algorithms.

6.5 Input Space Partition

CSTC has the ability to split the input space and learn more specialized classifiers sitting
deeper in the tree. Figure 10 (left) shows a pruned CSTC tree (λ= 4) for the LTR data
set. The number above each node indicates the average label of the testing inputs passing
through that node. We can observe that different branches aim at different parts of the
input domain. In general, the upper branches focus on correctly classifying higher-ranked
documents, while the lower branches target low-rank documents. Figure 10 (right) shows the
Jaccard matrix of the leaf classifiers (v3, v4, v5, v6, v14) from this CSTC tree. The number
in field i, j indicates the fraction of shared features between vi and vj . The matrix shows
a clear trend that the Jaccard coefficients decrease monotonically away from the diagonal.
This indicates that classifiers share fewer features in common if their average labels are
further apart—the most different classifiers v3 and v14 have only 64% of their features
in common—and validates that classifiers in the CSTC tree extract different features in
different regions of the tree.

2135

Xu, Kusner, Weinberger, Chen and Chapelle

6.6 CSTC Sensitivity

Recall the CSTC objective function with non-linear classifiers,

∑
vk∈V

(
1

n

n∑
i=1

pki `
k
i +ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl

[∑
t

et

√∑
vj∈πl

(βjt)
2

︸ ︷︷ ︸
CART evaluation cost penalty

+

d∑
α=1

cα

√√√√∑
vj∈πl

T∑
t=1

(Fαtβ
j
t)

2

︸ ︷︷ ︸
feature cost penalty

]
.

In order to judge the effect of different terms in the cost-sensitive regularization we ex-
periment with removing the CART evaluation cost penalty (or simply ‘evaluation cost’)
and/or the feature cost penalty. Figure 11 (Left) shows the performance of CSTC and the
less cost-sensitive variants, after removing one or both of the penalty terms, on the Yahoo!
LTR data set. As we suspected, the feature cost term seems to contribute most to the
performance of CSTC. Indeed, only taking into account evaluation cost severely impairs
the model. Without considering cost, CSTC seems to overfit even though the remaining
l1-regularization prevents the model from extracting all possible features.

0 2000 4000 6000 8000 10000
0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

CSTC
CSTC with different

Cost

N
D

C
G

 @
 5

0 2000 4000 6000 8000 10000
0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

CSTC varying (found by CV)
CSTC varying (= 1)

0 0.5 1 1.5 2
x 104

0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

CSTC
feature cost only
evaluation cost only
no cost

Cost

N
D

C
G

 @
 5

0 2000 4000 6000 8000 10000
0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

CSTC varying (found by CV)
CSTC varying (= 1)

0.2 0.4 0.6 0.8 1
x 104

0

Figure 11: Two plots showing the sensitivity of CSTC to different cost regularization and
hyperparameters. Left: The test ranking accuracy (NDCG@5) and cost of differ-
ent CSTC cost-sensitive variants. Right: The performance of CSTC for different
values of hyperparameter ρ ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5].

We are also interested in judging the effect of the l1-regularization hyperparameter
ρ on the performance of CSTC. Figure 11 (Right) shows for λ = 1 different settings of
ρ ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5] and the resulting change in cost and NDCG. The result
shows that varying ρ does follow the CSTC NDCG/cost trade-off for a little bit, however
ultimately leads to a reduction in accuracy. This supports our hypothesis that the cost
term is crucial to obtain low cost classifiers.

6.7 Cost-Sensitive MNIST

We created a cost-sensitive binary MNIST data set by first extracting all images of digits 3
and 8. We resized them to four different resolutions: 4× 4, 8× 8, 16× 16, and 28× 28 (the

2136

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

0 50 100 150 200 250 300 350 400 450
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

CSTCλ1 = 1−1

λ4 = 1−2

λ7 = 1−3

λ3 = 3 × 1−2

Cost

Er
ro
r

Figure 12: The test error vs. cost trade-off for CSTC on the cost-sensitive MNIST data set

original size), and concatenated all features, resulting in d = 1120 features. We assigned
each feature a cost c = 1. To obtain a baseline error rate for the data set we trained a support
vector machine (SVM) with a radial basis function (RBF) kernel. To select hyperparameters
C (SVM cost) and γ (kernel width) we used 100 rounds of Bayesian optimization on a
validation set (we found C = 753.1768, γ = 0.0198). An RBF-SVM trained with these
hyperparameters achieves a test error of 0.005 for cost c = 1120. Figure 12 shows error
versus cost for different values of the trade-off parameter λ. We note that CSTC smoothly
trades off feature cost for error, quickly reducing error initially at small increases in cost.

Figure 13 shows the features extracted and trees built for different values of λ for the
cost-sensitive MNIST data set. For each value, we show the paths of one randomly selected
3-instance (lower paths) and one 8-instance (upper paths). For each node in each path we
show the features extracted at each of the four resolutions in boxes (red indicates a feature
was not extracted). In general, as λ is decreased, more features are extracted. Additionally,
for a single λ, nodes along a path tend to use the same features. Finally, even when the
algorithm is restricted to use very little cost (i.e., the λ1 tree) it is still able to find features
that distinguish the classes in the data set, sending the 3 and 8-instances along different
paths in the tree.

6.8 CSTC Criterion

CSTC implicitly assumes that similarly-labeled inputs can be classified using similar features
by sending instances with different predictions to different classifiers. Since not all data sets
have such a property, we propose a simple test which indicates if a data set satisfies this
assumption. We train binary classifiers with l1-regularization for neighboring pairs of labels.
As an example, the LTR data set contains five labels {0, 1, 2, 3, 4}, so we train four binary
classifiers, (0 vs. 1, 1 vs. 2, etc.). We then compute the Jaccard coefficient matrix J between
the sparse (because of the l1-regularizer) feature vectors β of all classifiers, where an element
Jij indicates the percentage of overlapping features selected by classifiers i and j. Figure 14
shows this Jaccard matrix on the LTR data set. The figure shows a clear trend that the

2137

Xu, Kusner, Weinberger, Chen and Chapelle

v0

v1

v3

v4

v5

v2

v6

v1

v3

v4

v5

v6

v2

v0
v0

v1

v3

v2

v4

v10
v0

v1

v3

v2

v4

v9

v10

v9

λ7 = 1−3λ4 = 1−2λ3 = 3 × 1−2λ1 = 1−1

Figure 13: Trees generated for different λ on the cost-sensitive MNIST data set. For each λ
we show the path of one 3-instance (orange or green) and one 8-instance (red).
For each node these instances visit, we show the features extracted above (for
the 8-instance) and below (for the 3-instance) the trees in boxes for different
resolutions (red indicates a feature was not extracted).

Jaccard coefficients decrease monotonically away from the diagonal. This indicates that
classifiers share fewer features in common if the average label of their training data sets are
further apart—a good indication that on this data set CSTC will perform well.

7. Related Work

In the following we review different methods for budgeting the computational cost during
test-time starting with simply reducing the feature space via l1-regularization up to recent
work in budgeted learning.

7.1 l1 Norm Regularization

A related approach to control test-time cost is feature selection with l1 norm regulariza-
tion (Efron et al., 2004),

min
β
`(H(x;β),y) + λ|β|,

where λ ≥ 0 controls the magnitude of regularization. The l1-norm regularization results in
a sparse feature set (Schölkopf and Smola, 2001), and can significantly reduce the feature
cost during test-time (as unused features are never computed). Individual feature cost can
be incorporated with feature specific regularization trade-offs, λα. The downside of this

2138

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

Classifier
C

la
ss

ifi
er

class 0 & 1 class 1 & 2 class 2 & 3 class 3 & 4

cl
as

s
0

&
 1

cl
as

s
1

&
 2

cl
as

s
2

&
 3

cl
as

s
3

&
 4

1.00 0.49

1.00

1.00

1.00

0.49

0.41

0.41 0.32

0.32

0.52

0.52

0.33

0.33

0.49

0.49

Figure 14: Jaccard similarity coefficient between binary classifiers learned on the LTR data
set. The binary classifiers are trained with l1-regularization for neighboring pairs
of labels. As an example, the LTR data set contains five labels {0, 1, 2, 3, 4}, four
binary classifiers are trained, (0 vs. 1, 1 vs. 2, etc.). There is a clear trend that
the Jaccard coefficients decrease monotonically away from the diagonal. This
indicates that classifiers share fewer features in common if the average label of
their training data sets are further apart—an indication that CSTC will perform
well.

approach is that it extracts a feature for all inputs or none, which makes it uncompetitive
with more flexible cascade or tree models.

7.2 Feature Selection

Another approach, extending l1-regularization, is to select features using some external
criterion that naturally limits the number of features used. Cesa-Bianchi et al. (2011)
construct a linear classifier given a budget by selecting one instance at a time, then using
the current parameters to select a useful feature. This process is repeated until the budget
is met. Globerson and Roweis (2006) formulate feature selection as an adversarial game
and use minimax to develop a worst-case strategy, assuming feature removal at test-time.
These approaches, however, are unaware of the test-time cost in (3), and fail to pick the
optimal feature set that best trades-off loss and cost. Dredze et al. (2007) gets closer to
directly balancing this trade-off by combining the cost to select a feature with the mutual
information of that feature to build a decision tree that reduces the feature extraction
cost. This work, though, does not directly minimize the total test-time cost vs. accuracy
trade-off of the classifier. Most recently, Xu et al. (2013b) proposed to learn a new feature
representation entirely using selected features.

7.3 Linear Cascades

Grubb and Bagnell (2012) and Xu et al. (2012) focus on training a classifier that explicitly
trades-off the test-time cost with the loss. Grubb and Bagnell (2012) introduce SpeedBoost,
a generalization of functional gradient descent for anytime predictions (Zilberstein, 1996),

2139

Xu, Kusner, Weinberger, Chen and Chapelle

which incorporates the prediction cost during training. The resulting algorithms obtain
good approximations at very low cost and refine their predictions if more resources are
available. Both algorithms learn classifier cascades that schedule the computational budget
and can terminate prematurely if easy inputs reach confident predictions early, to save
overall CPU budget for more difficult inputs. This schedule is identical for all inputs,
whereas CSTC decides to send inputs along different paths within the tree of classifiers to
potentially extract fundamentally different features.

Based on the earlier observation that not all inputs require the same amount of com-
putation to obtain a confident prediction, there is much previous work that addresses this
by building classifier cascades (mostly for binary classification) (Viola and Jones, 2004;
Dundar and Bi, 2007; Lefakis and Fleuret, 2010; Saberian and Vasconcelos, 2010; Pujara
et al., 2011; Chen et al., 2012; Reyzin, 2011; Trapeznikov et al., 2013b). They chain several
classifiers into a sequence of stages. Each classifier can either early-exit inputs (predicting
them), or pass them on to the next stage. This decision is made based on the prediction
of each instance. Different from CSCC, these algorithms typically do not take into account
feature cost and implement more ad hoc rules to trade-off accuracy and cost.

7.4 Dynamic Feature Selection During Test-Time

For learning tasks with balanced classes and specialized features, the linear cascade model
is less well-suited. Because all inputs follow exactly the same linear path, it cannot capture
the scenario in which different subsets of inputs require different expert features. Chai
et al. (2004) introduce the value of unextracted features, where the value of a feature is the
increase (gain) in expected classification accuracy minus the cost of including that feature.
During test-time, each iteration, their algorithm picks the feature that has the highest
value and retrains a classifier with the new feature. The algorithm stops when there is no
increase in expected classification rate, or all features are included. Because they employ
a naive Bayes classifier, retraining incurs very little cost. Similarly, Gao and Koller (2011)
use locally weighted regression during test-time to predict the information gain of unknown
features.

Most recently, Karayev et al. (2012) use reinforcement learning during test-time to dy-
namically select object detectors for a particular image. He et al. (2013) use imitation
learning to select instance-specific features for graph-based dependency parsing. Our ap-
proach shares the same idea that different inputs require different features. However, instead
of learning the best feature for each input during test-time, which introduces an additional
cost, we learn and fix a tree structure in training. Each branch of the tree only handles
a subset of the input space and, as such, the classifiers in a given branch become special-
ized for those inputs. Moreover, because we learn a fixed tree structure, it has a test-time
complexity that is constant with respect to the training set size.

7.5 Budgeted Tree-Structured Classifiers

Concurrently, there has been work (Deng et al., 2011) to speed up the training and evalu-
ation of tree-structured classifiers (specifically label trees: Bengio et al., 2010), by avoiding
many binary one-vs-all classifier evaluations. In many real world data sets the test-time cost
is largely composed of feature extraction time and so our aim is different from their work.

2140

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

Another model (Beygelzimer et al., 2009) learns a tree of classifiers online for estimating the
conditional probability of an input label. Their aim is also different from ours as they only
consider reducing the training time necessary for the estimation problem. Goetschalckx and
Driessens also introduces parsimonious linear model tree to control test-time cost. Possibly
most similar to our work is Busa-Fekete et al. (2012), who apply a Markov decision process
to learn a directed acyclic graph. At each step, they select features for different instances.
Although similar in motivation, their algorithmic framework is very different and can be
regarded complementary to ours.

It is worth mentioning that, although Hierarchical Mixture of Experts (HME) (Jordan
and Jacobs, 1994) also builds tree-structured classifiers, it does not consider reducing the
test-time cost and thus results in fundamentally different models. In contrast, we train
each classifier with the test-time cost in mind and each test input only traverses a single
path from the root down to a terminal element, accumulating path-specific costs. In HME,
all test inputs traverse all paths and all leaf-classifiers contribute to the final prediction,
incurring the same cost for all test inputs.

8. Conclusions

In this paper, we systematically investigate the trade off between test-time CPU cost and
accuracy in real-world applications. We formulate this trade off mathematically for a tree
of classifiers and relax it into a well-behaved optimization problem. Our algorithm, Cost-
Sensitive Tree of Classifiers (CSTC), partitions the input space into sub-regions and identi-
fies the most cost-effective features for each one of these regions—allowing it to match the
high accuracy of the state-of-the-art at a small fraction of the cost. This cost function can
be minimized while learning the parameters of all classifiers in the tree jointly.

As the use of machine learning algorithms becomes more and more wide spread, ad-
dressing the CPU test-time cost becomes a problem of ever increasing importance. CSTC
is one solution but there are still many unanswered questions. Future work will investi-
gate learning theoretical guarantees for test-time budgeted learning, worst-case scenarios
(in contrast to average cost), other learning frameworks (e.g. , SVM classifiers: Cortes and
Vapnik, 1995) and the incorporation of hardware architectures constraints (e.g. , clusters,
GPUs and shared memory machines). We consider the principled approach of CSTC an
important step towards the ultimate goal of fully integrating test-time budgets into machine
learning.

Acknowledgements

KQW, ZX, and MK are supported by NIH grant U01 1U01NS073457-01 and NSF grants
1149882 and 1137211.

2141

Xu, Kusner, Weinberger, Chen and Chapelle

References

S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks.
Advances in Neural Information Processing Systems, 23:163–171, 2010.

A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl. Conditional probabil-
ity tree estimation analysis and algorithms. In Conference on Uncertainty in Artificial
Intelligence, pages 51–58, 2009.

S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

L. Breiman. Classification and Regression Trees. Chapman & Hall/CRC, 1984.

R. Busa-Fekete, D. Benbouzid, B. Kégl, et al. Fast classification using sparse decision DAGs.
In International Conference on Machine Learning, 2012.

B.B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt.
Early exit optimizations for additive machine learned ranking systems. In Web Search
and Data Mining, pages 411–420, 2010.

N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir. Efficient learning with partially ob-
served attributes. The Journal of Machine Learning Research, 12:2857–2878, 2011.

X. Chai, L. Deng, Q. Yang, and C.X. Ling. Test-cost sensitive naive Bayes classification.
In International Conference on Data Mining, pages 51–58. IEEE, 2004.

O. Chapelle, P. Shivaswamy, S. Vadrevu, K. Weinberger, Y. Zhang, and B. Tseng. Boosted
multi-task learning. Machine Learning, 85(1):149–173, 2011.

M. Chen, Z. Xu, K. Q. Weinberger, and O. Chapelle. Classifier cascade for minimizing fea-
ture evaluation cost. In International Conference on Artificial Intelligence and Statistics,
2012.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

J. Deng, S. Satheesh, A.C. Berg, and L. Fei-Fei. Fast and balanced: Efficient label tree
learning for large scale object recognition. In Advances in Neural Information Processing
Systems, 2011.

M. Dredze, R. Gevaryahu, and A. Elias-Bachrach. Learning fast classifiers for image spam.
In Conference on Email and Anti-Spam, 2007.

M.M. Dundar and J. Bi. Joint optimization of cascaded classifiers for computer aided
detection. In Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
2007.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals
of Statistics, 32(2):407–499, 2004.

M. Fleck, D. Forsyth, and C. Bregler. Finding naked people. European Conference on
Computer Vision, pages 593–602, 1996.

2142

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost

Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting. Japanese Society
for Artificial Intelligence, 14(771-780):1612, 1999.

J.H. Friedman. Greedy function approximation: a gradient boosting machine. The Annals
of Statistics, pages 1189–1232, 2001.

T. Gao and D. Koller. Active classification based on value of classifier. In Advances in
Neural Information Processing Systems, pages 1062–1070. 2011.

A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature deletion.
In International Conference on Machine Learning, pages 353–360. ACM, 2006.

R. Goetschalckx and K. Driessens. Parsimonious linear model trees.

A. Grubb and J. A. Bagnell. Speedboost: Anytime prediction with uniform near-optimality.
In International Conference on Artificial Intelligence and Statistics, 2012.

H. He, H. Daumé III, and J. Eisner. Dynamic feature selection for dependency parsing. In
Conference on Empirical Methods in Natural Language Processing, 2013.

K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. Trans-
actions on Information Systems, 20(4):422–446, 2002.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6(2):181–214, 1994.

S. Karayev, T. Baumgartner, M. Fritz, and T. Darrell. Timely object recognition. In
Advances in Neural Information Processing Systems, pages 899–907, 2012.

B. Korte and J. Vygen. Combinatorial Optimization, volume 21. Springer, 2012.

M. Kowalski. Sparse regression using mixed norms. Applied and Computational Harmonic
Analysis, 27(3):303–324, 2009.

L. Lefakis and F. Fleuret. Joint cascade optimization using a product of boosted classifiers.
In Advances in Neural Information Processing Systems, pages 1315–1323. 2010.

P. Melville, N. Shah, L. Mihalkova, and R.J. Mooney. Experiments on ensembles with
missing and noisy data. In Multiple Classifier Systems, pages 293–302. Springer, 2004.

J. Pujara, H. Daumé III, and L. Getoor. Using classifier cascades for scalable e-mail classi-
fication. In Conference on Email and Anti-Spam, 2011.

L. Reyzin. Boosting on a budget: Sampling for feature-efficient prediction. In International
Conference on Machine Learning, pages 529–536, 2011.

M. Saberian and N. Vasconcelos. Boosting classifier cascades. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural
Information Processing Systems, pages 2047–2055. 2010.

B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT press, 2001.

2143

Xu, Kusner, Weinberger, Chen and Chapelle

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

K. Trapeznikov and V. Saligrama. Supervised sequential classification under budget con-
straints. In International Conference on Artificial Intelligence and Statistics, pages 581–
589, 2013a.

K. Trapeznikov, V. Saligrama, and D. Castañón. Multi-stage classifier design. Machine
Learning, 92(2-3):479–502, 2013b.

P. Viola and M.J. Jones. Robust real-time face detection. International Journal on Com-
puter Vision, 57(2):137–154, 2004.

K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing
for large scale multitask learning. In International Conference on Machine Learning,
pages 1113–1120, 2009.

Z. Xu, K. Weinberger, and O. Chapelle. The greedy miser: Learning under test-time
budgets. In International Conference on Machine Learning, pages 1175–1182, 2012.

Z. Xu, M.J. Kusner, M. Chen, and K.Q. Weinberger. Cost-sensitive tree of classifiers. In
International Conference on Machine Learning, pages 133–141. JMLR Workshop and
Conference Proceedings, 2013a.

Z. Xu, M.J. Kusner, G. Huang, and K.Q. Weinberger. Anytime representation learning. In
International Conference on Machine Learning, pages 1076–1084, 2013b.

Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boosting method
and its application to learning ranking functions for web search. In Advances in Neural
Information Processing Systems, pages 1697–1704. Cambridge, MA, 2008.

S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73,
1996.

2144

	Introduction
	Test-Time Cost
	Cost-Sensitive Loss Minimization
	Test-Time Cost

	Cost-Sensitive Tree of Classifiers
	CSTC Nodes
	CSTC Loss
	Soft Tree Traversal
	Expected Tree Loss
	Expected Tree Costs

	Test-Cost Relaxation
	Optimization
	Optimization Details
	Node Initialization

	Fine-Tuning
	Determining the Tree Structure
	Tree Pruning
	Greedy Tree Building

	Cost-Sensitive Cascade of Classifiers
	Cronus

	Extension to Non-Linear Classifiers
	Feature Cost After the Boosting Trick
	CART Evaluation Cost
	CSTC and CSCC with Non-Linear Classifiers

	Results
	Synthetic Data
	Yahoo! Learning to Rank
	Yahoo! Learning to Rank: Skewed, Binary
	Feature Extraction
	Input Space Partition
	CSTC Sensitivity
	Cost-Sensitive MNIST
	CSTC Criterion

	Related Work
	l1 Norm Regularization
	Feature Selection
	Linear Cascades
	Dynamic Feature Selection During Test-Time
	Budgeted Tree-Structured Classifiers

	Conclusions

