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Abstract

Recently, machine learning algorithms have
successfully entered large-scale real-world in-
dustrial applications (e.g. search engines and
email spam filters). Here, the CPU cost
during test-time must be budgeted and ac-
counted for. In this paper, we address the
challenge of balancing the test-time cost and
the classifier accuracy in a principled fashion.
The test-time cost of a classifier is often dom-
inated by the computation required for fea-
ture extraction—which can vary drastically
across features. We decrease this extrac-
tion time by constructing a tree of classifiers,
through which test inputs traverse along in-
dividual paths. Each path extracts different
features and is optimized for a specific sub-
partition of the input space. By only com-
puting features for inputs that benefit from
them the most, our cost-sensitive tree of clas-
sifiers can match the high accuracies of the
current state-of-the-art at a small fraction of
the computational cost.

1. Introduction

Machine learning algorithms are widely used in
many real-world applications, ranging from email-
spam (Weinberger et al., 2009) and adult content filter-
ing (Fleck et al., 1996), to web-search engines (Zheng
et al., 2008). As machine learning transitions into
these industry fields, managing the CPU cost at test-
time becomes increasingly important. In applications
of such large scale, computation must be budgeted and
accounted for. Moreover, reducing energy wasted on
unnecessary computation can lead to monetary sav-
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ings and reductions of greenhouse gas emissions.

The test-time cost consists of the time required to eval-
uate a classifier and the time to extract features for
that classifier, where the extraction time across fea-
tures is highly variable. Imagine introducing a new
feature to an email spam filtering algorithm that re-
quires 0.01 seconds to extract per incoming email. If
a web-service receives one billion emails (which many
do daily), it would require 115 extra CPU days to ex-
tract just this feature. Although this additional fea-
ture may increase the accuracy of the filter, the cost
of computing it for every email is prohibitive. This
introduces the problem of balancing the test-time cost
and the classifier accuracy. Addressing this trade-off
in a principled manner is crucial for the applicability
of machine learning.

In this paper, we propose a novel algorithm, Cost-
Sensitive Tree of Classifiers (CSTC). A CSTC tree (il-
lustrated schematically in Fig. 1) is a tree of classifiers
that is carefully constructed to reduce the average test-
time complexity of machine learning algorithms, while
maximizing their accuracy. Different from prior work,
which reduces the total cost for every input (Efron
et al., 2004) or which stages the feature extraction
into linear cascades (Viola & Jones, 2004; Lefakis &
Fleuret, 2010; Saberian & Vasconcelos, 2010; Pujara
et al., 2011; Chen et al., 2012), a CSTC tree incor-
porates input-dependent feature selection into train-
ing and dynamically allocates higher feature budgets
for infrequently traveled tree-paths. By introducing
a probabilistic tree-traversal framework, we can com-
pute the exact expected test-time cost of a CSTC tree.
CSTC is trained with a single global loss function,
whose test-time cost penalty is a direct relaxation of
this expected cost. This principled approach leads to
unmatched test-cost/accuracy tradeoffs as it naturally
divides the input space into sub-regions and extracts
expensive features only when necessary.

We make several novel contributions: 1. We introduce
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the meta-learning framework of CSTC trees and de-
rive the expected cost of an input traversing the tree
during test-time. 2. We relax this expected cost with a
mixed-norm relaxation and derive a single global op-
timization problem to train all classifiers jointly. 3.
We demonstrate on synthetic data that CSTC effec-
tively allocates features to classifiers where they are
most beneficial and show on large-scale real-world web-
search ranking data that CSTC significantly outper-
forms the current state-of-the-art in test-time cost-
sensitive learning—maintaining the performance of the
best algorithms for web-search ranking at a fraction of
their computational cost.

2. Related Work

A basic approach to control test-time cost is the use
of l1-norm regularization (Efron et al., 2004), which
results in a sparse feature set, and can significantly re-
duce the feature cost during test-time (as unused fea-
tures are never computed). However, this approach
fails to address the fact that some inputs may be
successfully classified by only a few cheap features,
whereas others strictly require expensive features for
correct classification.

There is much previous work that extends single classi-
fiers to classifier cascades (mostly for binary classifica-
tion) (Viola & Jones, 2004; Lefakis & Fleuret, 2010;
Saberian & Vasconcelos, 2010; Pujara et al., 2011;
Chen et al., 2012). In these cascades, several classi-
fiers are ordered into a sequence of stages. Each clas-
sifier can either reject inputs (predicting them), or pass
them on to the next stage, based on the prediction of
each input. To reduce the test-time cost, these cas-
cade algorithms enforce that classifiers in early stages
use very few and/or cheap features and reject many
easily-classified inputs. Classifiers in later stages, how-
ever, are more expensive and cope with more difficult
inputs. This linear structure is particularly effective
for applications with highly skewed class imbalance
and generic features. One celebrated example is face
detection in images, where the majority of all image
regions do not contain faces and can often be easily
rejected based on the response of a few simple Haar
features (Viola & Jones, 2004). The linear cascade
model is however less suited for learning tasks with bal-
anced classes and specialized features. It cannot fully
capture the scenario where different partitions of the
input space require different expert features, as all in-
puts follow the same linear chain.

Grubb & Bagnell (2012) and Xu et al. (2012) focus on
training a classifier that explicitly trades-off test-time
cost and accuracy. Instead of optimizing the trade-

off by building a cascade, they push the cost trade-off
into the construction of the weak learners. It should be
noted that, in spite of the high accuracy achieved by
these techniques, the algorithms are based heavily on
stage-wise regression (gradient boosting) (Friedman,
2001), and are less likely to work with more general
weak learners.

Gao & Koller (2011) use locally weighted regression
during test time to predict the information gain of un-
known features. Different from our algorithm, their
model is learned during test-time, which introduces
an additional cost especially for large data sets. In
contrast, our algorithm learns and fixes a tree struc-
ture in training and has a test-time complexity that is
constant with respect to the training set size.

Karayev et al. (2012) use reinforcement learning to
dynamically select features to maximize the average
precision over time in an object detection setting. In
this case, the dataset has multi-labeled inputs and thus
warrants a different approach than ours.

Hierarchical Mixture of Experts (HME) (Jordan &
Jacobs, 1994) also builds tree-structured classifiers.
However, in contrast to CSTC, this work is not mo-
tivated by reductions in test-time cost and results in
fundamentally different models. In CSTC, each clas-
sifier is trained with the test-time cost in mind and
each test-input only traverses a single path from the
root down to a terminal element, accumulating path-
specific costs. In HME, all test-inputs traverse all
paths and all leaf-classifiers contribute to the final pre-
diction, incurring the same cost for all test-inputs.

Recent tree-structured classifiers include the work of
Deng et al. (2011), who speed up the training and eval-
uation of label trees (Bengio et al., 2010), by avoiding
many binary one-vs-all classifier evaluations. Differ-
ently, we focus on problems in which feature extrac-
tion time dominates the test-time cost which motivates
different algorithmic setups. Dredze et al. (2007) com-
bine the cost to select a feature with the mutual in-
formation of that feature to build a decision tree that
reduces the feature extraction cost. Different from this
work, they do not directly minimize the total test-time
cost of the decision tree or the risk. Possibly most sim-
ilar to our work are (Busa-Fekete et al., 2012), who
learn a directed acyclic graph via a Markov decision
process to select features for different instances, and
(Wang & Saligrama, 2012), who adaptively partition
the feature space and learn local region-specific classi-
fiers. Although each work is similar in motivation, the
algorithmic frameworks are very different and can be
regarded complementary to ours.
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3. Cost-sensitive classification

We first introduce our notation and then formalize our
test-time cost-sensitive learning setting. Let the train-
ing data consist of inputs D={x1, . . . ,xn} ⊂ Rd with
corresponding class labels {y1, . . . , yn} ⊆ Y, where
Y = R in the case of regression (Y could also be a
finite set of categorical labels—because of space limi-
tations we do not focus on this case in this paper).

Non-linear feature space. Throughout this pa-
per, we focus on linear classifiers but in order to al-
low non-linear decision boundaries we map the in-
put into a non-linear feature space with the “boost-
ing trick” (Friedman, 2001; Chapelle et al., 2011),
prior to our optimization. In particular, we first
train gradient boosted regression trees with a squared
loss penalty (Friedman, 2001), H ′(xi) =

∑T
t=1 ht(xi),

where each function ht(·) is a limited-depth CART
tree (Breiman, 1984). We then apply the map-
ping xi → φ(xi) to all inputs, where φ(xi) =
[h1(xi), . . . , hT (xi)]

>. To avoid confusion between
CART trees and the CSTC tree, we refer to CART
trees ht(·) as weak learners.

Risk minimization. At each node in the CSTC
tree we propose to learn a linear classifier in this fea-
ture space, H(xi) = φ(xi)

>β with β ∈ RT , which is
trained to explicitly reduce the CPU cost during test-
time. We learn the weight-vector β by minimizing a
convex empirical risk function `(φ(xi)

>β, yi) with l1
regularization, |β|. In addition, we incorporate a cost
term c(β), which we derive in the following subsection,
to restrict test-time cost. The combined test-time cost-
sensitive loss function becomes

L(β) =
∑

i

`(φ(xi)
>β, yi) + ρ|β|

︸ ︷︷ ︸
regularized risk

+ λ c(β)︸︷︷︸
test-cost

, (1)

where λ is the accuracy/cost trade-off parameter, and
ρ controls the strength of the regularization.

Test-time cost. There are two factors that con-
tribute to the test-time cost of each classifier. The
weak learner evaluation cost of all active ht(·) (with
|βt|>0) and the feature extraction cost for all features
used in these weak learners. We assume that features
are computed on demand with the cost c the first time
they are used, and are free for future use (as feature
values can be cached). We define an auxiliary matrix
F ∈ {0, 1}d×T with Fαt = 1 if and only if the weak
learner ht uses feature fα. Let et > 0 be the cost to
evaluate a ht(·), and cα be the cost to extract feature
fα. With this notation, we can formulate the total

test-time cost for an instance precisely as

c(β) =
∑

t

et‖βt‖0
︸ ︷︷ ︸
evaluation cost

+
∑

α

cα

∥∥∥∥∥
∑

t

|Fαtβt|
∥∥∥∥∥

0︸ ︷︷ ︸
feature extraction cost

, (2)

where the l0 norm for scalars is defined as ‖a‖0∈{0, 1}
with ‖a‖0 =1 if and only if a 6=0. The first term assigns
cost et to every weak learner used in β, the second term
assigns cost cα to every feature that is extracted by at
least one of such weak learners.

Test-cost relaxation. The cost formulation in (2)
is exact but difficult to optimize as the l0 norms are
non-continuous and non-differentiable. As a solution,
throughout this paper we use the mixed-norm relax-
ation of the l0 norm over sums,

∑

j

∥∥∥∥∥
∑

i

|aij |
∥∥∥∥∥

0

→
∑

j

√∑

i

(aij)2, (3)

described by (Kowalski, 2009). Note that for a sin-
gle element this relaxation relaxes the l0 norm to
the l1 norm, ‖aij‖0 →

√
(aij)2 = |aij |, and recovers

the commonly used approximation to encourage spar-
sity (Efron et al., 2004; Schölkopf & Smola, 2001). We
plug the cost-term (2) into the loss in (1) and apply
the relaxation (3) to all l0 norms to obtain

∑

i

`i+ρ|β|
︸ ︷︷ ︸

regularized loss

+λ

( ∑

t

et|βt|
︸ ︷︷ ︸

ev. cost penalty

+
∑

α

cα

√∑

t

(Fαtβt)2

︸ ︷︷ ︸
feature cost penalty

)
,

(4)

where we abbreviate `i=`(φ(xi)
>β, yi) for simplicity.

While (4) is cost-sensitive, it is restricted to a single
linear classifier. In the next section we describe how
to expand this formulation into a cost-effective tree-
structured model.

4. Cost-sensitive tree

We begin by introducing foundational concepts regard-
ing the CSTC tree and derive a global loss function (5).
Similar to the previous section, we first derive the ex-
act cost term and then relax it with the mixed-norm.
Finally, we describe how to optimize this function ef-
ficiently and to undo some of the inaccuracy induced
by the mixed-norm relaxations.

CSTC nodes. We make the assumption that in-
stances with similar labels can utilize similar features.1

1For example, in web-search ranking, features generated
by browser statistics are typically predictive only for highly
relevant pages as they require the user to spend significant
time on the page and interact with it.
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min
β1,θ1,...,β|V |,θ|V |

∑

vk∈V

(
1

n

n∑

i=1

pki `
k
i +ρ|βk|

)

︸ ︷︷ ︸
regularized risk

+λ
∑

vl∈L
pl

[ ∑

t

et

√∑

vj∈πl

(βjt )
2

︸ ︷︷ ︸
evaluation cost penalty

+
∑

α

cα

√∑

vj∈πl

∑

t

(Fαtβ
j
t )

2

︸ ︷︷ ︸
feature cost penalty

]
(5)

(β1, θ1)

(β2, θ2)

(β3, θ3)

classifier
nodes

(β4, θ4)

(β5, θ5)

(β6, θ6)

(β0, θ0)

CSTC Tree π7

π8

π9

π10

v0

v1

v3

v4

v5

v2

v6

terminal 
element

φ(x)�β0 > θ0

φ(x)�β0 ≤ θ0

v7

v8

v9

v10

Figure 1. A schematic layout of a CSTC tree. Each node
vk has a threshold θk to send instances to different parts
of the tree and a weight vector βk for prediction. We solve
for βk and θk that best balance the accuracy/cost trade-off
for the whole tree. All paths of a CSTC tree are shown in
color.

We therefore design our tree algorithm to partition the
input space based on classifier predictions. Classifiers
that reside deep in the tree become experts for a small
subset of the input space and intermediate classifiers
determine the path of instances through the tree. We
distinguish between two different elements in a CSTC
tree (depicted in Figure 1): classifier nodes (white
circles) and terminal elements (black squares). Each
classifier node vk is associated with a weight vector
βk and a threshold θk. Different from cascade ap-
proaches, these classifiers not only classify inputs us-
ing βk, but also branch them by their threshold θk,
sending inputs to their upper child if φ(xi)

>βk > θk,
and to their lower child otherwise. Terminal elements
are “dummy” structures and are not classifiers. They
return the predictions of their direct parent classifier
nodes—essentially functioning as a placeholder for an
exit out of the tree. The tree structure may be a full
balanced binary tree of some depth (eg. figure 1), or
can be pruned based on a validation set (eg. figure 4,
left).

During test-time, inputs are first applied to the root
node v0. The root node produces predictions φ(xi)

>β0

and sends the input xi along one of two different paths,

depending on whether φ(xi)
>β0 > θ0. By repeat-

edly branching the test-inputs, classifier nodes sitting
deeper in the tree only handle a small subset of all
inputs and become specialized towards that subset of
the input space.

4.1. Tree loss

We derive a single global loss function over all nodes
in the CSTC tree.

Soft tree traversal. Training the CSTC tree with
hard thresholds leads to a combinatorial optimiza-
tion problem, which is NP-hard. Therefore, during
training, we softly partition the inputs and assign
traversal probabilities p(vk|xi) to denote the likeli-
hood of input xi traversing through node vk. Ev-
ery input xi traverses through the root, so we de-
fine p(v0|xi) = 1 for all i. We use the sigmoid func-
tion to define a soft belief that an input xi will tran-
sition from classifier node vk to its upper child vj

as p(vj |xi, vk) = σ(φ(xi)
>βk − θk).2 The probabil-

ity of reaching child vj from the root is, recursively,
p(vj |xi) = p(vj |xi, vk)p(vk|xi), because each node has
exactly one parent. For a lower child vl of parent vk we
naturally obtain p(vl|xi) =

[
1 − p(vj |xi, vk)

]
p(vk|xi).

In the following paragraphs we incorporate this prob-
abilistic framework into the single-node risk and cost
terms of eq. (4) to obtain the corresponding expected
tree risk and tree cost.

Expected tree risk. The expected tree risk can be
obtained byWg over all nodes V and inputs and weigh-
ing the risk `(·) of input xi at node vk by the proba-
bility pki =p(vk|xi),

1

n

n∑

i=1

∑

vk∈V
pki `(φ(xi)

>βk, yi). (6)

This has two effects: 1. the local risk for each node
focusses more on likely inputs; 2. the global risk at-
tributes more weight to classifiers that serve many in-
puts.

Expected tree costs. The cost of a test-input is
the cumulative cost across all classifiers along its path
through the CSTC tree. Figure 1 illustrates an exam-

2The sigmoid function is defined as σ(a) = 1
1+exp(−a)

and takes advantage of the fact that σ(a) ∈ [0, 1] and that
σ(·) is strictly monotonic.
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ple of a CSTC tree with all paths highlighted in color.
Every test-input must follow along exactly one of the
paths from the root to a terminal element. Let L de-
note the set of all terminal elements (e.g., in figure 1
we have L={v7, v8, v9, v10}), and for any vl∈L let πl

denote the set of all classifier nodes along the unique
path from the root v0 before terminal element vl (e.g.,
π9 = {v0, v2, v5}). The evaluation and feature cost of
this unique path is exactly

cl=
∑

t

et

∥∥∥∥∥
∑

vj∈πl

|βjt |
∥∥∥∥∥

0︸ ︷︷ ︸
evaluation cost

+
∑

α

cα

∥∥∥∥∥
∑

vj∈πl

∑

t

|Fαtβjt |
∥∥∥∥∥

0︸ ︷︷ ︸
feature cost

.

This term is analogous to eq. (2), except the cost et of
the weak learner ht is paid if any of the classifiers vj in
path πl use this tree (i.e. assign βjt non-zero weight).
Similarly, the cost cα of a feature fα is paid exactly
once if any of the weak learners of any of the classi-
fiers along πl require it. Once computed, a feature or
weak learner can be reused by all classifiers along the
path for free (as the computation can be cached very
efficiently).

Given an input xi, the probability of reaching ter-
minal element vl ∈ L (traversing along path πl) is
pli = p(vl|xi). Therefore, the marginal probability that
a training input (picked uniformly at random from
the training set) reaches vl is pl =

∑
i p(v

l|xi)p(xi) =
1
n

∑n
i=1 p

l
i. With this notation, the expected cost for

an input traversing the CSTC tree becomes E[cl] =∑
vl∈L p

lcl. Using our l0-norm relaxation in eq. (3) on

both l0 norms in cl gives the final expected tree cost
penalty

∑

vl∈L
pl

[∑

t

et

√∑

vj∈πl

(βjt )
2 +
∑

α

cα

√∑

vj∈πl

∑

t

(Fαtβ
j
t )

2

]
,

which naturally encourages weak learner and feature
re-use along paths through the CSTC tree.

Optimization problem. We combine the risk (6)
with the cost penalties and add the l1-regularization
term (which is unaffected by our probabilistic split-
ting) to obtain the global optimization problem (5).
(We abbreviate the empiWisk at node vk as `ki =
`(φ(xi)

>βk, yi).)

4.2. Optimization Details

There are many techniques to minimize the loss in
(5). We use a cyclic optimization procedure, solving

∂L
∂(βk,θk)

for each classifier node vk one at a time, keep-

ing all other nodes fixed. For a given classifier node
vk, the traversal probabilities pji of a descendant node

vj and the probability of an instance reaching a ter-
minal element pl also depend on βk and θk (through
its recursive definition) and must be incorporated into
the gradient computation.

To minimize (5) with respect to parameters βk, θk,
we use the lemma below to overcome the non-
differentiability of the square-root terms (and l1
norms) resulting from the l0-relaxations (3).

Lemma 1. Given any g(x) > 0, the following holds:

√
g(x) = min

z>0

1

2

[
g(x)

z
+ z

]
. (7)

The lemma can be proved as z =
√
g(x) minimizes the

function on the right hand side. Further, it is shown
in (Boyd & Vandenberghe, 2004) that the right hand
side is jointly convex in x and z, so long as g(x) is
convex.

For each square-root or l1 term we introduce an aux-
iliary variable (i.e., z above) and alternate between
minimizing the loss in (5) with respect to βk, θk and
the auxiliary variables. The former is performed with
conjugate gradient descent and the latter can be com-
puted efficiently in closed form. This pattern of block-
coordinate descent followed by a closed form minimiza-
tion is repeated until convergence. Note that the loss
is guaranteed to converge to a fixed point because each
iteration decreases the loss function, which is bounded
below by 0.

Initialization. The minimization of eq. (5) is non-
convex and therefore initialization dependent. How-
ever, minimizing eq. (5) with respect to the parameters
of leaf classifier nodes is convex, as the loss function,
after substitutions based on lemma 1, becomes jointly
convex (because of the lack of descendant nodes). We
therefore initialize the tree top-to-bottom, starting at
v0, and optimize over βk by minimizing (5) while con-
sidering all descendant nodes of vk as “cut-off” (thus
pretending node vk is a leaf).

Tree pruning. To obtain a more compact model and
to avoid overfitting, the CSTC tree can be pruned with
the help of a validation set. As each node is a classifier,
we can apply the CSTC tree on a validation set and
compute the validation error at each node. We prune
away nodes that, upon removal, do not decrease the
performance of CSTC on the validation set (in the case
of ranking data, we even can use validation NDCG as
our pruning criterion).

Fine-tuning. The relaxation in (3) makes the exact
l0 cost terms differentiable and is well suited to ap-
proximate which dimensions in a vector βk should be



Cost-Sensitive Tree of Classifiers

X

X

X

X

Z

Z

Z

β3 =




0
0
0
1
0
0




β4 =




0
0
1
0
0
0




β5 =




1
0
0
0
0
0




β6 =




0
1
0
0
0
0







y++

y−+

y−−
y+−

sign(X)
sign(Z)




c =




10
10
10
10
1
1




µ++

µ−+

µ−−

input: costs (c):

data labels
 

µ+−

β1 =




0
0
0
0

0.29
0




β2 =




0
0
0
0

−4.02
0




label means

X

β0 =




0
0
0
0
0

−7.91




Z

Z

Z

Z

data
CSTC Tree

Figure 2. CSTC on synthetic data. The box at left describes the artificial data set. The rest of the figure shows the CSTC
tree built for the data set. At each node we show a plot of the predictions made by that classifier. After each node we
show the weight vector that was selected to make predictions and send instances to child nodes (if applicable).

assigned non-zero weights. The mixed-norm does how-
ever impact the performance of the classifiers because
(different from the l0 norm) larger weights in β incur
larger penalties in the loss. We therefore introduce
a post-processing step to correct the classifiers from
this unwanted regularization effect. We re-optimize all
predictive classifiers (classifiers with terminal element
children, i.e. classifiers that make final predictions),
while clamping all features with zero-weight to strictly
remain zero.

min
β̄k

∑

i

pki `(φ(xi)
>β̄

k
, yi) + ρ|β̄k|

subject to: β̄kt = 0 if βkt = 0. (8)

The final CSTC tree uses these re-optimized weight

vectors β̄
k

for all predictive classifier nodes vk.

5. Results

In this section, we first evaluate CSTC on a carefully
constructed synthetic data set to test our hypothesis
that CSTC learns specialized classifiers that rely on
different feature subsets. We then evaluate the perfor-
mance of CSTC on the large scale Yahoo! Learning to
Rank Challenge data set and compare it with state-of-
the-art algorithms.

5.1. Synthetic data

We construct a synthetic regression dataset, sampled
from the four quadrants of the X,Z-plane, where
X = Z = [−1, 1]. The features belong to two cate-
gories: cheap features, sign(x), sign(z) with cost c=1,
which can be used to identify the quadrant of an in-
put; and four expensive features y++, y+−, y−+, y−−
with cost c = 10, which represent the exact label of
an input if it is from the corresponding region (a ran-
dom number otherwise). Since in this synthetic data
set we do not transform the feature space, we have
φ(x) =x, and F (the weak learner feature-usage vari-
able) is the 6×6 identity matrix. By design, a perfect
classifier can use the two cheap features to identify the
sub-region of an instance and then extract the correct
expensive feature to make a perfect prediction. The
minimum feature cost of such a perfect classifier is ex-
actly c=12 per instance. The labels are sampled from
Gaussian distributions with quadrant-specific means
µ++, µ−+, µ+−, µ−− and variance 1. Figure 2 shows
the CSTC tree and the predictions of test inputs made
by each node. In every path along the tree, the first
two classifiers split on the two cheap features and iden-
tify the correct sub-region of the input. The final clas-
sifier extracts a single expensive feature to predict the
labels. As such, the mean squared error of the training
and testing data both approach 0.
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Figure 3. The test ranking accuracy (NDCG@5) and cost
of various cost-sensitive classifiers. CSTC maintains its
high retrieval accuracy significantly longer as the cost-
budget is reduced. Note that fine-tuning does not improve
NDCG significantly because, as a metric, it is insensitive
to mean squared error.

5.2. Yahoo! Learning to Rank

To evaluate the performance of CSTC on real-world
tasks, we test our algorithm on the public Yahoo!
Learning to Rank Challenge data set3 (Chapelle &
Chang, 2011). The set contains 19,944 queries and
473,134 documents. Each query-document pair xi con-
sists of 519 features. An extraction cost, which takes
on a value in the set {1, 5, 20, 50, 100, 150, 200}, is as-
sociated with each feature4. The unit of these values
is the time required to evaluate a weak learner ht(·).
The label yi ∈ {4, 3, 2, 1, 0} denotes the relevancy of
a document to its corresponding query, with 4 indi-
cating a perfect match. In contrast to Chen et al.
(2012), we do not inflate the number of irrelevant doc-
uments (by counting them 10 times). We measure the
performance using NDCG@5 (Järvelin & Kekäläinen,
2002), a preferred ranking metric when multiple lev-
els of relevance are available. Unless otherwise stated,
we restrict CSTC to a maximum of 10 nodes. All re-
sults are obtained on a desktop with two 6-core Intel
i7 CPUs. Minimizing the global objective requires less
than 3 hours to complete, and fine-tuning the classi-
fiers takes about 10 minutes.

Comparison with prior work. Figure 3 shows a
comparison of CSTC with several recent algorithms
for test-time cost-sensitive learning. We show NDCG

3http://learningtorankchallenge.yahoo.com
4The extraction costs were provided by a Yahoo! em-

ployee.
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Figure 4. (Left) The pruned CSTC-tree generated from
the Yahoo! Learning to Rank data set. (Right) Jaccard
similarity coefficient between classifiers within the learned
CSTC tree.

versus cost (in units of weak learner evaluations).
The plot shows different stages in our derivation of
CSTC: the initial cost-insensitive ensemble classifier
H ′(·) (Friedman, 2001) from section 3 (stage-wise re-
gression), a single cost-sensitive classifier as described
in eq. (4), the CSTC tree (5) and CSTC tree with
fine-tuning (8). We obtain the curves by varying
the accuracy/cost trade-off parameter λ (and perform
early stopping based on the validation data, for fine-
tuning). For CSTC tree we evaluate six settings,
λ= { 1

3 ,
1
2 , 1, 2, 3, 4, 5, 6}. In the case of stage-wise re-

gression, which is not cost-sensitive, the curve is sim-
ply a function of boosting iterations.

For competing algorithms, we include Early exit
(Cambazoglu et al., 2010) which improves upon stage-
wise regression by short-circuiting the evaluation of
unpromising documents at test-time, reducing the
overall test-time cost. The authors propose several
criteria for rejecting inputs early and we use the
best-performing method “early exits using proxim-
ity threshold”. For Cronus (Chen et al., 2012), we
use a cascade with a maximum of 10 nodes. All
hyper-parameters (cascade length, keep ratio, dis-
count, early-stopping) were set based on a validation
set. The cost/accuracy curve was generated by vary-
ing the corresponding trade-off parameter, λ.

As shown in the graph, CSTC significantly improves
the cost/accuracy trade-off curve over all other algo-
rithms. The power of Early exit is limited in this case
as the test-time cost is dominated by feature extrac-
tion, rather than the evaluation cost. Compared with
Cronus, CSTC has the ability to identify features that
are most beneficial to different groups of inputs. It is
this ability, which allows CSTC to maintain the high
NDCG significantly longer as the cost-budget is re-
duced.

http://learningtorankchallenge.yahoo.com


Cost-Sensitive Tree of Classifiers

1  2  3  4
0

0.2

0.4

0.6

0.8

1

Depth

Fe
at

ur
e 

U
se

d

 

 

c=1 (123)
c=5 (31)
c=20 (191)
c=50 (125)
c=100 (16)
c=150 (32)
c=200 (1)

P
ro

po
rti

on
 o

f F
ea

tu
re

s

Tree Depth

Figure 5. The ratio of features, grouped by cost, that are
extracted at different depths of CSTC (the number of fea-
tures in each cost group is indicated in parentheses in the
legend). More expensive features (c ≥ 20) are gradually
extracted as we go deeper.

Note that CSTC with fine-tuning only achieves very
tiny improvement over CSTC without it. Although
the fine-tuning step decreases the mean squared error
on the test-set, it has little effect on NDCG, which is
only based on the relative ranking of the documents (as
opposed to their exact predictions). Moreover, because
we fine-tune prediction nodes until validation NDCG
decreases, for the majority of λ values, only a small
amount of fine-tuning occurs.

Input space partition. Figure 4 (left) shows a
pruned CSTC tree (λ = 4) for the Yahoo! data set.
The number above each node indicates the average la-
bel of theWg inputs passing through that node. We
can observe that different branches aim at different
parts of the input domain. In general, the upper
branches focus on correctly classifying higher ranked
documents, while the lower branches target low-rank
documents. Figure 4 (right) shows the Jaccard matrix
of the predictive classifiers (v3, v4, v5, v6, v14) from the
same CSTC tree. The matrix shows a clear trend that
the Jaccard coefficients decrease monotonically away
from the diagonal. This indicates that classifiers share
fewer features in common if their average labels are
further apart—the most different classifiers v3 and v14

have only 64% of their features in common—and vali-
dates that classifiers in the CSTC tree extract different
features in different regions of the tree.

Feature extraction. We also investigate the features
extracted in individual classifier nodes. Figure 5 shows
the fraction of features, with a particular cost, ex-
tracted at different depths of the CSTC tree for the
Yahoo! data. We observe a general trend that as
depth increases, more features are being used. How-
ever, cheap features (c ≤ 5) are fully extracted early-

on, whereas expensive features (c ≥ 20) are extracted
by classifiers sitting deeper in the tree, where each in-
dividual classifier only copes with a small subset of in-
puts. The expensive features are used to classify these
subsets of inputs more precisely. The only feature that
has cost 200 is extracted at all depths—which seems
essential to obtain high NDCG (Chen et al., 2012).

6. Conclusions

We introduce Cost-Sensitive Tree of Classifiers
(CSTC), a novel learning algorithm that explicitly ad-
dresses the trade-off between accuracy and expected
test-time CPU cost in a principled fashion. The CSTC
tree partitions the input space into sub-regions and
identifies the most cost-effective features for each one
of these regions—allowing it to match the high accu-
racy of the state-of-the-art at a small fraction of the
cost. We obtain the CSTC algorithm by formulat-
ing the expected test-time cost of an instance passing
through a tree of classifiers and relax it into a contin-
uous cost function. This cost function can be mini-
mized while learning the parameters of all classifiers
in the tree jointly. By making the test-time cost vs.
accuracy tradeoff explicit we enable high performance
classifiers that fit into computational budgets and can
reduce unnecessary energy consumption in large-scale
industrial applications. Further, engineers can design
highly specialized features for particular edges-cases
of their input domain and CSTC will automatically
incorporate them on-demand into its tree structure.
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