
Anytime Representation Learning

Zhixiang (Eddie) Xu1 xuzx@cse.wustl.edu
Matt J. Kusner1 mkusner@wustl.edu
Gao Huang2 huang-g09@mails.tsinghua.edu.cn
Kilian Q. Weinberger1 kilian@wustl.edu
1Washington University, One Brookings Dr., St. Louis, MO 63130 USA
2Tsinghua University, Beijing, China

Abstract

Evaluation cost during test-time is becoming
increasingly important as many real-world
applications need fast evaluation (e.g. web
search engines, email spam filtering) or use
expensive features (e.g. medical diagnosis).
We introduce Anytime Feature Representa-
tions (AFR), a novel algorithm that explic-
itly addresses this trade-off in the data rep-
resentation rather than in the classifier. This
enables us to turn conventional classifiers,
in particular Support Vector Machines, into
test-time cost sensitive anytime classifiers—
combining the advantages of anytime learn-
ing and large-margin classification.

1. Introduction

Machine learning algorithms have been successfully de-
ployed into many real-world applications, such as web-
search engines (Zheng et al., 2008; Mohan et al., 2011)
and email spam filters (Weinberger et al., 2009). Tra-
ditionally, the focus of machine learning algorithms is
to train classifiers with maximum accuracy—a trend
that made Support Vector Machines (SVM) (Cortes
& Vapnik, 1995) very popular because of their strong
generalization properties. However, in large scale
industrial-sized applications, it can be as important to
keep the test-time CPU cost within budget. Further,
in medical applications, features can correspond to
costly examinations, which should only be performed
when necessary (here cost may denote actual currency
or patient agony). Carefully balancing this trade-off
between accuracy and test-time cost introduces new
challenges for machine learning.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Specifically, this test-time cost consists of (a) the CPU
cost of evaluating a classifier and (b) the (CPU or mon-
etary) cost of extracting corresponding features. We
explicitly focus on the common scenario where the fea-
ture extraction cost is dominant and can vary drasti-
cally across different features, e.g. web-search rank-
ing (Chen et al., 2012), email spam filtering (Dredze
et al., 2007; Pujara et al., 2011), health-care applica-
tions (Raykar et al., 2010), image classification (Gao
& Koller, 2011a).

We adopt the anytime classification setting (Grubb &
Bagnell, 2012). Here, classifiers extract features on-
demand during test-time and can be queried at any
point to return the current best prediction. This may
happen when the cost budget is exhausted, the classi-
fier is believed to be sufficiently accurate or the pre-
diction is needed urgently (e.g. in time-sensitive appli-
cations such as pedestrian detection (Gavrila, 2000)).
Different from previous settings in budgeted learning,
the cost budget is explicitly unknown during test-time.

Prior work addresses anytime classification primarily
with additive ensembles, obtained through boosted
classifiers (Viola & Jones, 2004; Grubb & Bagnell,
2011). Here, the prediction is refined through an in-
creasing number of weak learners and can naturally be
interrupted at any time to obtain the current classifi-
cation estimate. Anytime adaptations of other classi-
fication algorithms where early querying of the evalu-
ation function is not as natural—such as the popular
SVM—have until now remained an open problem.

In this paper, we address this setting with a novel
approach to budgeted learning. In contrast to most
previous work we learn an additive anytime represen-
tation. During test-time, an input is mapped into a
feature space with multiple stages: each stage refines
the data representation and is accompanied by its own
SVM classifier, but adds extra cost in terms of feature
extraction. We show that the SVM classifiers and the

Anytime Representation Learning

cost-sensitive anytime representations can be learned
jointly in a single optimization.

Our method, Anytime Feature Representations
(AFR), is the first to incorporate anytime learning
into large margin classifiers—combining the benefits of
both learning frameworks. On two real world bench-
mark data sets our anytime AFR out-performs or
matches the performance of the Greedy Miser (Xu
et al., 2012), a state-of-the-art cost-sensitive algorithm
which is trained with a known test budget.

2. Related Work

Controlling test-time cost is often performed with clas-
sifier cascades (mostly for binary classification) (Vi-
ola & Jones, 2004; Lefakis & Fleuret, 2010; Saberian
& Vasconcelos, 2010; Pujara et al., 2011; Wang &
Saligrama, 2012). In these cascades, several classifiers
are ordered into a sequence of stages. Each classi-
fier can either (a) reject inputs and predict them, or
(b) pass them on to the next stage. This decision is
based on the current prediction of an input. The cas-
cades can be learned with boosting (Viola & Jones,
2004; Freund & Schapire, 1995), clever sampling (Pu-
jara et al., 2011), or can be obtained by inserting early-
exits (Cambazoglu et al., 2010) into preexisting stage-
wise classifiers (Friedman, 2001).

One can extend the cascade to tree-based structures
to naturally incorporate decisions about feature ex-
traction with respect to some cost budget (Xu et al.,
2013; Busa-Fekete et al., 2012). Notably, Busa-Fekete
et al. (2012) use a Markov decision process to con-
struct a directed acyclic graph to select features for
different instances during test-time. One limitation of
these cascade and tree-structured techniques is that a
cost budget must be specified prior to test-time. Gao
& Koller (2011a) use locally weighted regression dur-
ing test-time to predict and extract the features with
maximum information gain. Different from our algo-
rithm, their model is learned during test-time.

Saberian & Vasconcelos (2010); Chen et al. (2012); Xu
et al. (2013) all learn classifiers from weak learners.
Their approaches perform two separate optimizations:
They first train weak learners and then re-order and
re-weight them to balance their accuracy and cost. As
a result, the final classifier has worse accuracy vs. cost
trade-offs than our jointly optimized approach.

The Forgetron (Dekel et al., 2008) introduces a clever
modification of the kernelized perceptron to stay
within a pre-defined memory budget. Gao & Koller
(2011b) introduce a framework to boost large-margin
loss functions. Different from our work, they focus

on learning a classifier and an output-coding matrix
simultaneously as opposed to learning a feature rep-
resentation (they use the original features), and they
do not address the test-time budgeted learning sce-
nario. Kedem et al. (2012) learn a feature represen-
tation with gradient boosted trees (Friedman, 2001)—
however, with a different objective (for nearest neigh-
bor classification) and without any cost consideration.

Grubb & Bagnell (2010) combine gradient boosting
and neural networks through back-propagation. Their
approach shares a similar structure with ours, as our
algorithm can be regarded as a two layer neural net-
work, where the first layer is non-linear decision trees
and the second layer a large margin classifier. How-
ever, different from ours, their approach focuses on
avoiding local minima and does not aim to reduce test-
time cost.

3. Background

Let the training data consist of input vectors
{x1, . . . ,xn} ∈ Rd with corresponding discrete class
labels {y1, . . . , yn} ∈ {+1,−1} (the extension to multi-
class is straightforward and described in section 5). We
assume that during test-time, features are computed
on-demand, and each feature θ has an extraction cost
cθ>0 when it is extracted for the first time. Since fea-
ture values can be efficiently cached, subsequent usage
of an already-extracted feature is free.

Our algorithm consists of two jointly integrated parts,
classification and representation learning. For the for-
mer we use support vector machines (Cortes & Vapnik,
1995) and for the latter we use the Greedy Miser (Xu
et al., 2012), a variant of gradient boosting (Friedman,
2001). In the following, we provide a brief overview of
all three algorithms.

Support Vector Machines (SVMs). Let φ denote
a mapping that transforms inputs xi into feature vec-
tors φ(xi). Further, we define a weight vector w and
bias b. SVMs learn a maximum margin separating hy-
perplane by solving a constrained optimization prob-
lem,

min
w,b

1

2
w>w +

1

2
C

n∑
i

[1− yi(w>φ(xi) + b)]2+, (1)

where constant C is the regularization trade-off hyper-
parameter, and [a]+ = max(a, 0). The squared hinge-
loss penalty guarantees differentiability of (1), and
simplifies the derivation in section 4. A test input is
classified by the sign of the SVM predicting function

f [φ(xj)] = w>φ(xj) + b. (2)

Anytime Representation Learning

Gradient Boosted Trees (GBRT). Given a contin-
uous and differentiable loss function L, GBRT (Fried-
man, 2001) learns an additive classifier HT (x) =∑T
t=1 ηth

t(x) that minimizes L(HT). Each ht ∈H is
a limited depth regression tree (Breiman, 1984) (also
referred to as a weak learner) added to the current
classifier at iteration t, with learning rate ηt≥0. The
weak learner ht is selected to minimize the function
L(Ht−1 + ηth

t). This is achieved by approximating
the negative gradient of L w.r.t. the current Ht−1:

ht = argmin
ht∈H

∑
i

(
− ∂L
∂Ht−1(xi)

− ht(xi)
)2

. (3)

The greedy CART algorithm (Breiman, 1984) finds
an approximate solution to (3). Consequently, ht can
be obtained by supplying − ∂L

∂Ht−1(xi)
as the regression

targets for all inputs xi to an off-the-shelf CART im-
plementation (Tyree et al., 2011).

Greedy Miser. Recently, Xu et al. (2012) introduced
the Greedy Miser, which incorporates feature cost into
gradient boosting. Let cf (H) denote the test-time fea-
ture extraction cost of a gradient boosted tree ensem-
ble H and ce(H) denote the CPU time to evaluate all
trees3. Let Bf , Be > 0 be corresponding finite cost
budgets. The Greedy Miser solves the following opti-
mization problem:

min
H
L(H), s.t. ce(H) ≤ Be and cf (H) ≤ Bf , (4)

where L is continuous and differentiable. To formal-
ize the feature cost, they define an auxiliary function
Fθ(ht) ∈ {0, 1} indicating if feature θ is used in tree
ht for the first time, (i.e. Fθ(ht) = 1). The authors
show that by incrementally selecting ht according to

min
ht∈H

∑
i

(
− ∂L
∂Ht−1(xi)

−ht(xi)
)2

+λ
∑
θ

Fθ(ht)cθ,(5)

the constrained optimization problem in eq. (4) is
(approximately) minimized up to a local minimum
(stronger guarantees exist if L is convex). Here, λ
trades off the classification loss with the feature ex-
traction cost (enforcing budget Bf) and the maximum
number of iterations limits the tree evaluation cost (en-
forcing budget Be).

4. SVM on a Test-time Budget

As a lead-up to Anytime Feature Representations,
we formulate the learning of the feature representa-

3Note that both costs can be in different units. Also, it
is possible to set ce(H)=0 for all H. We set the evaluation
cost of a single tree to 1 cost unit.

tion mapping φ : Rd → RS and the SVM classi-
fier (w, b) such that the costs of the final classifica-
tion cf (f [φ(x)]), ce(f [φ(x)]) are within cost budgets
Bf , Be. In the following section we extend this for-
mulation to an anytime setting, where Bf and Be are
unknown and the user can interrupt the classifier at
any time. As the SVM classifier is linear, we con-
sider its evaluation free during test-time and the cost
ce originates entirely from the computation of φ(x).

Boosted representation. We learn a representa-
tion with a variant of the boosting trick (Trzcinski
et al., 2012; Chapelle et al., 2011). To differentiate the
original features x and the new feature representation
φ(x), we refer only to original features as “features”,
and the components of the new representation as “di-
mensions”. In particular, we learn a representation
φ(x) ∈ RS through the mapping function φ, where
S is the total number of dimensions of our new rep-
resentation. Each dimension s of φ(x) (denoted [φ]s)

is a gradient boosted classifier, i.e. [φ]s = η
∑T
t=0 h

t
s.

Specifically, each hts is a limited depth regression tree.

For each dimension s, we initialize [φ]s with the sth

tree obtained from running the Greedy Miser for S
iterations with a very small feature budget Bf . Sub-
sequent trees are learned as described in the following.
During classification, the SVM weight vector w assigns
a weight ws to each dimension [φ]s.

Train/Validation Split. As we learn the feature rep-
resentation φ and the classifier w, b jointly, overfitting
is a concern, and we carefully address it in our learn-
ing setup. Usually, overfitting in SVMs can be over-
come by setting the regularization trade-off parame-
ter C carefully with cross-validation. In our setting,
however, the representation changes and the hyper-
parameter C needs to be adjusted correspondingly. We
suggest a more principled setup, inspired by Chapelle
et al. (2002), and also learn the hyper-parameter C.
To avoid trivial solutions, we divide our training data
into two equally-sized parts, which we refer to as train-
ing and validation sets, T and V. The representation
is learned on both sets, whereas the classifier w, b is
trained only on T , and the hyper-parameter is tuned
for V. We further split the validation set into vali-
dation V and a held-out set O in a 80/20 split. The
held-out set O is used for early-stopping.

Nested optimization. We define a loss function that
approximates the 0-1 loss on the validation set V,

LV(φ; w, b) =
∑
xi∈V

βyiσ
(
f(φ(xi))

)
, (6)

where σ(z) = 1
1+eaz is a soft approximation of the

sign(·) step function (we use a=5 throughout, similar

Anytime Representation Learning

to Chapelle et al. (2002)) and βyi > 0 denotes a class
specific weight to address potential class imbalance.
f(·) is the SVM predicting function defined in (2). The
classifier parameters (w, b) are assumed to be the op-
timal solution of (1) for the training set T . We can
express this relation as a nested optimization problem
(in terms of the SVM parameters w, b) and incorporate
our test-time budgets Be, Bf :

min
φ,C
LV(φ,w, b) s.t. ce(φ) ≤ Be and cf (φ) ≤ Bf (7)

min
w,b

1

2
‖w‖2+

1

2
C

n∑
i

βyi [1− yi(w>φ(xi) + b)]2+.

According to Theorem 4.1 in Bonnans & Shapiro
(1998), LV is continuous and differentiable based on
the uniqueness of the optimal solution w∗, b∗. This is
a sufficient prerequisite for being able to solve LV via
the Greedy Miser (5), and since the constraints in (7)
are analogous to (4), we can optimize it accordingly.

Tree building. The optimization (7) is essentially
solved by a modified version of gradient descent, up-
dating φ and C. Specifically, for fast computation,
we update one dimension [φ]s at a time, as we can uti-
lize the previous learned tree in the same dimension to
speed up computation for the next tree (Tyree et al.,
2011). The computation of ∂LV

∂[φ]s
and ∂LV

∂C is described

in detail in section 4.2. At each iteration, the tree hts is
selected to trade-off the gradient fit of the loss function
LV with the feature cost of the tree,

min
hts

∑
i

(
− ∂LV
∂[φ]s(xi)

− hts(xi)
)2

+λ
∑
θ

Fθ(hts)cθ. (8)

We use the learned tree hts to update the representa-
tion [φ]s = [φ]s + ηhts. At the same time, the variable
C is updated with small gradient steps.

4.1. Anytime Feature Representations

Minimizing (7) results in a cost-sensitive SVM (w, b)
that uses a feature representation φ(x) to make classi-
fications within test-time budgets Bf , Be. In the any-
time learning setting, however, the test-time budgets
are unknown. Instead, the user can interrupt the test
evaluation at any time.

Anytime parameters. We refer to our approach
as Anytime Feature Representations (AFR) and Al-
gorithm 1 summarizes the individual steps of AFR in
pseudo-code. We obtain an anytime setting by steadily
increasing Be and Bf until the cost constraint has no
effect on the optimal solution. In practice, the tree
budget (Be) increase is enforced by adding one tree
hts at a time (where t ranges from 1 to T). The fea-
ture budget Bf is enforced by the parameter λ in (8).

Algorithm 1 AFR in pseudo-code.

1: Initialize λ=λ0, s0 = 1
2: while λ > ε do
3: Initialize φ = [h0

s0(·), . . . , h0
s0+S(·)]> with (5).

4: for s = s0 to s0 + S do
5: for t = 1 to T do
6: Train an SVM using φ to obtain w and b.
7: If accuracy on O has increased, continue.
8: Compute gradients ∂LV

∂[φ]s
and ∂LV

∂C

9: Update C = C − γ ∂LV
∂C

10: Call CART with impurity (8) to obtain hts
11: Stop if

∑
i h

t
s(xi)

∂LV
∂[φ]s(xi)

< 0

12: Update [φ]s = [φ]s + ηhts.
13: end for
14: end for
15: λ := λ/2 and s0+ = S.
16: end while

[φ]1 = h0
1(x) + h1

1(x) + · · · + · · · + hT−1
1 (x) + hT

1 (x)
[φ]2 = h0

2(x) + h1
2(x) + · · · + ht

2(x) + · · · + hT
2 (x)

...
...

...
...

...
...

...
[φ]s = h0

s(x) + h1
s(x) + · · · + ht

s(x) + · · · + hT
s (x)

...
...

...
...

...
...

...
[φ]S = h0

S(x) + h1
S(x) + h2

S(x) + · · · + · · · + hT
S (x)

weak
learner

Anytime Representation

Features θ1 ∪ θ2 θ1 ∪ θ2 ∪ · · · ∪ θi θ1 ∪ · · · ∪ θFθ1

Cost

new
feature

Figure 1. A schematic layout of Anytime Feature Repre-
sentations. Different shaded areas indicate representations
of different costs, the darker the costlier. During training
time, SVM parameters w, b are saved every time a new
feature θi is extracted. During test-time, under budgets
Be, Bf , we use the most expensive triplet (φk,wk, bk) with
cost ce(φk) ≤ Be and cf (φk) ≤ Bf .

As the feature cost is dominant, we slowly decrease λ
(starting from some high value λ0). For each interme-
diate value of λ we learn S dimensions of φ(x) (each
dimension consisting of T trees). Whenever all S di-
mensions are learned, λ is divided by a factor of 2 and
an additional S dimensions of φ(x) are learned and
concatenated to the existing representation.

Whenever a new feature is extracted by a tree hts,
the cost increases substantially. Therefore we store
the learned representation mapping function and the
learned SVM parameters whenever a new feature
is extracted. We overload φf to denote the rep-
resentation learned with feature f th extracted, and
wf , bf as the corresponding SVM parameters. Stor-
ing these parameters results in a series of triplets
(φ1,w1, b1) . . . (φF ,wF , bF) of increasing cost, i.e.
c(φ1) ≤ · · · ≤ c(φF) (where F is the total number
of extracted features). Note that we save the map-

Anytime Representation Learning

ping function φ, rather than the representation of each
training input φ(x).

Evaluation. During test time, the classifier may be
stopped during the extraction of the f+1th feature, be-
cause the feature budget Bf (unknown during training
time) has been reached. In this case, to make a pre-
diction, we sum the previously-learned representations
generated by the first f features w>f

∑f
k=1 φk(x) + bf .

This approach is schematically depicted in figure 1.

Early-stopping. Updating each dimension with a
fixed number of T trees may lead to overfitting. We
apply early-stopping by evaluating the prediction ac-
curacy on the hold-out set O. We stop adding trees
to each dimension whenever this accuracy decreases.
Algorithm (1) details all steps of our algorithm.

4.2. Optimization

Updating feature representation φ(x) requires comput-
ing the gradient of the loss function LV w.r.t. φ(x) as
stated in eq. (8). In this section we explain how to
compute the necessary gradients efficiently.

Gradient w.r.t. φ(x). We use the chain rule to
compute the derivative of LV w.r.t. each dimension
[φ]s,

∂LV
∂[φ]s

=
∂LV
∂f

∂f

∂[φ]s
, (9)

where f is the prediction function in eq. (2). As chang-
ing [φ]s not only affects the validation data, but also
the representation of the training set, w and b are also
functions of [φ]s. The derivative of f w.r.t. the repre-
sentation of the training inputs, [φ]s ∈ T is

∂f

∂[φ]s
=
(∂w

∂[φ]s

)>
φV +

∂b

∂[φ]s
, (10)

where we denote all validation inputs by φV . For val-
idation inputs, the derivative w.r.t. [φ]s ∈ V is

∂f

∂[φ]s
= w>

∂φV
∂[φ]s

. (11)

Note that with |T | training inputs and |V| validation
inputs, the gradient consists of |T |+ |V| components.

In order to compute the remaining derivatives ∂w
∂[φ]s

and ∂b
∂[φ]s

we will express w and b in closed-form w.r.t.

[φ]s. First, let us define the contribution to the loss of
input xi as ξi = [1−yi(w∗>φ(xi)+b∗)]+. The optimal
value w∗, b∗ is only affected by support vectors (inputs
with ξi > 0). Without loss of generality, let us as-
sume that those inputs are the first m in our ordering,
x1, . . . ,xm. We remove all non-support vectors, and

let Φ̂ = [y1φ1, . . . , ynm
φnm

], and ξ = [ξ1, . . . , ξnm
]>.

We also define a diagonal matrix Λ ∈ Rnm×nm whose
diagonal elements are class weight Λii = βyi . We can
then rewrite the nested SVM optimization problem
within (7) in matrix form:

min
w,b

L =
1

2
wTw+

C

2
(1−w>Φ̂−by)>Λ(1−w>Φ̂−by).

As this objective is convex, we can obtain the optimal
solution of w, b by setting ∂L

∂w and ∂L
∂b to zero:

∂L

∂w
= 0 =⇒ w − CΦ̂Λ(1− Φ̂>w − by>) = 0.

∂L

∂b
= 0 =⇒ −yΛ(1− Φ̂>w − by>) = 0.

By re-arranging the above equations, we can express
them as a matrix equality,[

I
C + Φ̂ΛΦ̂> Φ̂Λy>

yΛΦ̂> yΛy>

]
︸ ︷︷ ︸

M

[
w
b

]
=

[
Φ̂Λ1
yΛ1

]
︸ ︷︷ ︸

z

.

We absorb the coefficients on the left-hand side into
a design matrix M ∈ Rd+1×d+1, and right-hand side
into a vector z ∈ Rd+1. Consequently, we can ex-
press w and b as a function of M−1 and z, and derive
their derivatives w.r.t. [φ]s from the matrix inverse
rule (Petersen & Pedersen, 2008), leading to

∂[w>, b]>

∂[φi]s
= M−1

(
∂z

∂[φi]s
− ∂M

∂[φi]s

[
w
b

])
(12)

To compute the derivatives ∂M
∂[φ]s

, we note that the

upper left block of M is a d× d inner product matrix
scaled by Λ and translated by I

C , and we obtain the
derivative w.r.t. each element of the upper left block,

∂(I
C + Φ̂ΛΦ̂>)rs

∂[φ]s(xi)
=

{
βyi [φ]r(xi) if r 6= s,

2βyi [φ]s(xi) if r = s.

The remaining derivatives are ∂Φ̂Λy>

∂[φ]s(xi)
= βyi and

∂z
[φ]s(xi)

= [0, . . . , yiβyi , . . . , 0]> ∈ Rd+1. To complete

the chain rule in eq. (9), we also need

∂LV
∂f

= −yiσ(yif [φ(xi)])(1− σ(yif [φ(xi)])). (13)

Combining eqs. (10), (11), (12) and (13) completes the
gradient ∂LV

∂[φ]s
.

Gradient w.r.t. C. The derivative ∂f
∂C is very similar

to ∂f
∂[φ]s

, the difference being in ∂M
∂C , which only has

non-zero value on diagonal elements,

∂Mrs

∂C
=

{
− 1
C2 if s = r ∧ r 6= m+ 1,

0 otherwise.
(14)

Anytime Representation Learning

Although computing the derivative requires the inver-
sion of matrix M, M is only a (d + 1) × (d + 1) ma-
trix. Because our algorithm converges after generating
a few (d ≈ 100) dimensions, the inverse operation is
not computationally intensive.

5. Results

We evaluate our algorithm on a synthetic data set in
order to demonstrate the AFR learning approach, as
well as two benchmark data sets from very different do-
mains: the Yahoo! Learning to Rank Challenge data
set (Chapelle & Chang, 2011) and the Scene 15 recog-
nition data set from Lazebnik et al. (2006).

Synthetic data. To visualize the learned anytime
feature representation, we construct a synthetic data
set as follows. We generate n = 1000 points (640
for training/validation and 360 for testing) uniformly
sampled from four different regions of two-dimensional
space (as shown in figure 2, left). Each point is la-
beled to be in class 1 or class 2 according to the
XOR rule. These points are then randomly-projected
into a ten-dimensional feature space (not shown).
Each of these ten features is assigned an extraction
cost: {1, 1, 1, 2, 5, 15, 25, 70, 100, 1000}. Correspond-
ingly, each feature θ has zero-mean Gaussian noise
added to it, with variance 1

cθ
(where cθ is the cost of

feature θ). As such, cheap features are poorly repre-
sentative of the classes while more expensive features
more accurately distinguish the two classes. To high-
light the feature-selection capabilities of our technique
we set the evaluation cost ce to 0. Using this data,
we constrain the algorithm to learn a two-dimensional
anytime representation (i.e. φ(x) ∈ R2).

The center portion of figure 2 shows the anytime repre-
sentations of testing points for various test-time bud-
gets, as well as the learned hyperplane (black line),
margins (gray lines) and classification accuracies. As
the allowed feature cost budget is increased, AFR
steadily adjusts the representation and classifier to
better distinguish the two classes. Using a small set of
features (cost = 95) AFR can achieve nearly perfect
test accuracy and using all features AFR fully sepa-
rates the test data.

The rightmost part of figure 2 shows how the learned
SVM classifier changes as the representation changes.
The coefficients of the hyperplane w = [w1, w2]> ini-
tially change drastically to appropriately weight the
AFR features, then decrease gradually as more weak
learners are added to φ. Throughout, the hyper-
parameter C is also optimized.

Yahoo Learning to Rank. The Yahoo! Learn-

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0.11

0.12

0.13

0.14

0.15

0.16

0.17

Linear SVM
GBRT squared hinge loss (Friedman, 2001)
GBRT squared loss (Friedman, 2001)
Early−exit s=0.1 (Cambazoglu et. al. 2010)
Early−exit s=0.3 (Cambazoglu et. al. 2010)
Cronus (Chen et. al. 2012)
Greedy Miser (Xu et. al. 2012)
AFR

Cost

P
re

ci
si

on
 @

 5

Yahoo Learning to Rank

Figure 3. The accuracy/cost trade-off curves for a number
of state-of-the-art algorithms on the Yahoo! Learning to
Rank Challenge data set. The cost is measured in units of
the time required to evaluate one weak learner.

ing to Rank Challenge data set consists of query-
document instance pairs, with labels having values
from {0, 1, 2, 3, 4}, where 4 means the document is
perfectly relevant to the query and 0 means it is ir-
relevant. Following the steps of Chen et al. (2012), we
transform the data into a binary classification problem
by distinguishing purely between relevant (yi≥3) and
irrelevant (yi<3) documents. The resulting labels are
yi ∈ {+1,−1}. The total binarized data set contains
2000, 2002, and 2001 training, validation and test-
ing queries and 20258, 20258, 26256 query-document
instances respectively. As in Chen et al. (2012) we
replicate each negative, irrelevant instance 10 times to
simulate the scenario where only a few documents out
of hundreds of thousands of candidate documents are
highly relevant. Indeed in real world applications, the
distribution of the two classes is often very skewed,
with vastly more negative examples presented.

Each input contains 519 features, and the
feature extraction costs are in the set
{1, 5, 10, 20, 50, 100, 150, 200}. The unit of cost is
the time required to evaluate one limited-depth
regression tree ht(·), thus the evaluation cost ce is set
to 1. To evaluate the cost-accuracy performance, we
follow the typical convention for a binary ranking data
set and use the Precision@5 metric. This counts how
many documents are relevant in the top 5 retrieved
documents for each query.

In order to address the label inbalance, we add a mul-
tiplicative weight to the loss of all positive examples,
β+, which is set by cross validation (β+ = 2). We set
the hyper-parameters to T =10, S=20 and λ0 =10. As
the algorithm is by design fairly insensitive to hyper-
parameters, this setting was determined without need-
ing to search through (T, S, λ0) space.

Anytime Representation Learning

20 40 60 80 100 120 140

0

2

4

6

8

10

12

w1
w2

b
C

Anytime RepresentationTest Data

Cost 5

class 2class 1

0.82
0.82
0.76

Train
Val.
Test

Cost 25
0.89
0.90
0.84

Train
Val.
Test

Cost 95
0.99
0.99
0.98

Train
Val.
Test

Cost 1220
1.0
1.0
1.0

Train
Val.
Test

decision boundary

Iterations

SVM parameters

margin

Figure 2. A demonstration of our method on a synthetic data set (shown at left). As the feature representation is allowed
to use more expensive features, AFR can better distinguish the test data of the two classes. At the bottom of each
representation is the classification accuracies of the training/validation/testing data and the cost of the representation.
The rightmost plot shows the values of SVM parameters w, b and hyper-parameter C at each iteration.

Comparison. The most basic baseline is GBRT with-
out cost consideration. We apply GBRT using two
different loss functions: the squared loss and the un-
regularized squared hinge loss. In total we train 2000
trees. We plot the cost and accuracy curves of GBRT
by adding 10 trees at a time. In addition to this ad-
ditive classifier, we show the results of a linear SVM
applied to the original features as well.

We also compare against current state-of-the-art com-
peting algorithms. We include Early-Exit (Cam-
bazoglu et al., 2010), which is based on GBRT. It
short-circuits the evaluation of lower ranked and un-
promising documents at test-time, based on some
threshold s (we show s = 0.1, 0.3), reducing the over-
all test-time cost. Cronus (Chen et al., 2012) im-
proves over Early-Exit by reweighing and re-ordering
the learned trees into a feature-cost sensitive cascade
structure. We show results of a cascade with a max-
imum of 10 nodes. All of its hyper-parameters (cas-
cade length, keep ratio, discount, early-stopping) were
set based on the validation set. We generate the
cost/accuracy curve by varying the trade-off param-
eter λ, in their paper. Finally, we compare against
Greedy Miser (Xu et al., 2012) trained using the un-
regularized squared hinge loss. The cost/accuracy
curve is generated by re-training the algorithm with
different cost/accuracy trade-off parameters λ. We
also use the validation set to select the best number of
trees needed for each λ.

Figure 3 shows the performance of all algorithms. Al-
though the linear SVM uses all features to make cost-
insensitive predictions, it achieves a relatively poor
result on this ranking data set, due to the limited
power of a linear decision boundary on the original
feature space. This trend has previously been ob-
served in Chapelle & Chang (2011). GBRT with un-

regularized squared hinge loss and squared loss achieve
peak accuracy after using a significant amount of the
feature set. Early-Exit only provides limited improve-
ment over GBRT when the budget is low. This is
primarily because, in this case, the test-time cost is
dominated by feature extraction rather than the eval-
uation cost. Cronus improves over Early-Exit signif-
icantly due to its automatic stage reweighing and re-
ordering. However, its power is still limited by its fea-
ture representation, which is not cost-sensitive. AFR
out-performs the best performance of Greedy Miser
for a variety of cost budgets. Different from Greedy
Miser, which must be re-trained for different budgets
along the cost/accuracy trade-off curve (each resulting
in a different model), AFR consists of a single model
which can be halted at any point along its curve—
providing a state-of-the-art anytime classifier. It is
noteworthy that AFR obtains the highest test-scores
overall, which might be attributed to the better gen-
eralization of large-margin classifiers.

Scene recognition. The second data set we exper-
iment with is from the image domain. The scene 15
(Lazebnik et al., 2006) data set contains 4485 images
from 15 scene classes. The task is to classify the scene
in each image. Following the procedure use by Li et al.
(2010); Lazebnik et al. (2006), we construct the train-
ing set by selecting 100 images from each class, and
leave the remaining 2865 images for testing. We ex-
tract a variety of vision features from Xiao et al. (2010)
with very different computational costs: GIST, spatial
HOG, Local Binary Pattern (LBP), self-similarity, tex-
ton histogram, geometric texton, geometric color, and
Object Bank (Li et al., 2010). As mentioned by the
authors of Object Bank, each object detector works
independently. Therefore we apply 177 object detec-
tors to each image, and treat each of them as indepen-
dent descriptors. In total, we have 184 different image

Anytime Representation Learning

0 5 10 15 20 25 30 35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

GBRT squared hinge loss (Friedman, 2001)
GBRT logistic loss (Friedman, 2001)
SVM linear kernel
Early−Exit
Greedy Miser (Xu et. al. 2012)
AFR

Cost

A
cc
ur
ac
y

Scene 15

Figure 4. The accuracy/cost performance trade-off for dif-
ferent algorithms on the Scene 15 multi-class scene recog-
nition problem. The cost is in units of CPU time.

descriptors, and the total number of resulting raw fea-
tures is 76187. The feature extraction cost is the ac-
tual CPU time to compute each feature on a desktop
with dual 6-core Intel i7 CPUs with 2.66GHz, ranging
from 0.037s (Object Bank) to 9.282s (geometric tex-
ton). Since computing each type of image descriptor
results in a group of features, as long as any of the fea-
tures in a descriptor is requested, we extract the entire
descriptor. Thus, subsequent requests for features in
that descriptor are free.

We train 15 one-vs-all classifiers, and learn the fea-
ture representation mapping φ, the SVM parameters
(w,b,C) for each classifier separately. Since each de-
scriptor is free once extracted, we also set the descrip-
tor cost to zero whenever it is use by one of the 15
classifiers. To overcome the problem of different de-
cision value scales resulting from different one-vs-all
classifiers, we use Platt scaling (Platt, 1999) to re-
scale each classifier prediction within [0, 1].4 We use
the same hyper-parameters as the Yahoo! data set,
except we set λ0 = 210, as the unit of cost in scene15
is much smaller.

Figure 4 demonstrates the cost/accuracy performance
of several current state-of-the-art techniques and our
algorithm. The GBRT-based algorithms include
GBRT using the logistic loss and the squared loss,
where we use Platt scaling for the hinge loss variant
to cope with the scaling problem. We generate the
curve by adding 10 trees at a time. Although these
two methods achieve high accuracy, their costs are

4Platt scaling makes SVM predictions interpretable as
probabilities. This can also be use to monitor the confi-
dence threshold of the anytime classifiers to stop evalua-
tion when a confidence threshold is met (e.g. in medical
applications to avoid further costly feature extraction).

also significantly higher due to their cost-insensitive
nature. We also evaluate a linear SVM. Because it is
only able to learn a linear decision boundary on the
original feature space, it has a lower accuracy than
the GBRT-based techniques for a given cost. For cost-
sensitive methods, we first evaluate Early-Exit. As
this is a multi-class classification problem, we intro-
duce an early-exit every 10 trees, and we remove test
inputs after platt-scaling results in a score greater
than a threshold s. We plot the curve by varying
s. Since Early-Exit lacks the capability to automat-
ically pick expensive and accurate features early-on,
its improvement is very limited. For Greedy Miser,
we split the training data into 75/25 and use the
smaller subset as validation to set the number of trees.
We use un-regularized squared hinge-loss with differ-
ent values of the cost/accuracy trade-off parameter
λ ∈ {40, 41, 42, 43, 44, 45}. Greedy Miser performs bet-
ter than the previous baselines, and our approach con-
sistently matches it, save one setting. Our method
AFR generates a smoother budget curve, and can be
stopped anytime to provide predictions at test-time.

6. Discussion

To our knowledge, we provide the first learning al-
gorithm for cost-sensitive anytime feature representa-
tions. Our results are highly encouraging, in partic-
ular AFR matches or even outperforms the results of
the current best cost-sensitive classifiers, which must
be provided with knowledge about the exact test-time
budget during training.

Addressing the anytime classification setting in a prin-
cipled fashion has high impact potential in several
ways: i) reducing the cost required for the average case
frees up more resources for the rare difficult cases—
thus improving accuracy; ii) decreasing computational
demands of massive industrial computations can sub-
stantially reduce energy consumption and greenhouse
emissions; iii) classifier querying enables time-sensitive
applications like pedestrian detection in cars with in-
herent accuracy/urgency trade-offs.

Learning anytime representations adds new flexibility
towards the choice of classifier and the learning set-
ting and may enable new use cases and application
areas. As future work, we plan to focus on incorpo-
rating other classification frameworks and apply our
setting to critical applications such as real-time pedes-
trian detection and medical applications.

Acknowledgements KQW, ZX, and MK are sup-
ported by NIH grant U01 1U01NS073457-01 and NSF
grants 1149882 and 1137211. The authors thank Stephen
W. Tyree for clarifying discussions and suggestions.

Anytime Representation Learning

References

Bonnans, J Frédéric and Shapiro, Alexander. Optimization
problems with perturbations: A guided tour. SIAM re-
view, 40(2):228–264, 1998.

Breiman, L. Classification and regression trees. Chapman
& Hall/CRC, 1984.

Busa-Fekete, R., Benbouzid, D., Kégl, B., et al. Fast clas-
sification using sparse decision dags. In ICML, 2012.

Cambazoglu, B.B., Zaragoza, H., Chapelle, O., Chen, J.,
Liao, C., Zheng, Z., and Degenhardt, J. Early exit opti-
mizations for additive machine learned ranking systems.
In WSDM’3, pp. 411–420, 2010.

Chapelle, O. and Chang, Y. Yahoo! learning to rank chal-
lenge overview. In JMLR: Workshop and Conference
Proceedings, volume 14, pp. 1–24, 2011.

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee,
S. Choosing multiple parameters for support vector ma-
chines. Machine Learning, 46(1):131–159, 2002.

Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K.,
Zhang, Y., and Tseng, B. Boosted multi-task learning.
Machine learning, 85(1):149–173, 2011.

Chen, M., Xu, Z., Weinberger, K. Q., and Chapelle, O.
Classifier cascade for minimizing feature evaluation cost.
In AISTATS, 2012.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

Dekel, Ofer, Shalev-Shwartz, Shai, and Singer, Yoram. The
forgetron: A kernel-based perceptron on a budget. SIAM
Journal on Computing, 37(5):1342–1372, 2008.

Dredze, M., Gevaryahu, R., and Elias-Bachrach, A. Learn-
ing fast classifiers for image spam. In proceedings of the
Conference on Email and Anti-Spam (CEAS), 2007.

Freund, Y. and Schapire, R. A desicion-theoretic gen-
eralization of on-line learning and an application to
boosting. In Computational learning theory, pp. 23–37.
Springer, 1995.

Friedman, J.H. Greedy function approximation: a gradient
boosting machine. The Annals of Statistics, pp. 1189–
1232, 2001.

Gao, T. and Koller, D. Active classification based on value
of classifier. In NIPS, pp. 1062–1070. 2011a.

Gao, Tianshi and Koller, Daphne. Multiclass boosting with
hinge loss based on output coding. ICML ’11, pp. 569–
576, 2011b.

Gavrila, D. Pedestrian detection from a moving vehicle.
ECCV 2000, pp. 37–49, 2000.

Grubb, A. and Bagnell, J. A. Speedboost: Anytime predic-
tion with uniform near-optimality. In AISTATS, 2012.

Grubb, A. and Bagnell, J.A. Generalized boosting
algorithms for convex optimization. arXiv preprint
arXiv:1105.2054, 2011.

Grubb, Alexander and Bagnell, J Andrew. Boosted back-
propagation learning for training deep modular net-
works. In Proceedings of the International Conference
on Machine Learning (27th ICML), 2010.

Kedem, Dor, Tyree, Stephen, Weinberger, Kilian Q., Sha,

Fei, and Lanckriet, Gert. Non-linear metric learning. In
NIPS, pp. 2582–2590. 2012.

Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of
features: Spatial pyramid matching for recognizing nat-
ural scene categories. In CVPR, pp. 2169–2178, 2006.

Lefakis, L. and Fleuret, F. Joint cascade optimization using
a product of boosted classifiers. In NIPS, pp. 1315–1323.
2010.

Li, L.J., Su, H., Xing, E.P., and Fei-Fei, L. Object bank:
A high-level image representation for scene classification
and semantic feature sparsification. NIPS, 2010.

Mohan, A., Chen, Z., and Weinberger, K. Q. Web-
search ranking with initialized gradient boosted regres-
sion trees. JMLR: Workshop and Conference Proceed-
ings, 14:77–89, 2011.

Petersen, K. B. and Pedersen, M. S. The matrix cookbook,
Oct 2008.

Platt, J.C. Fast training of support vector machines using
sequential minimal optimization. 1999.

Pujara, J., Daumé III, H., and Getoor, L. Using classi-
fier cascades for scalable e-mail classification. In CEAS,
2011.

Raykar, V.C., Krishnapuram, B., and Yu, S. Designing
efficient cascaded classifiers: tradeoff between accuracy
and cost. In ACM SIGKDD, pp. 853–860, 2010.

Saberian, M. and Vasconcelos, N. Boosting classifier cas-
cades. In NIPS, pp. 2047–2055. 2010.

Trzcinski, Tomasz, Christoudias, Mario, Lepetit, Vincent,
and Fua, Pascal. Learning image descriptors with the
boosting-trick. In NIPS, pp. 278–286. 2012.

Tyree, S., Weinberger, K.Q., Agrawal, K., and Paykin, J.
Parallel boosted regression trees for web search ranking.
In WWW, pp. 387–396. ACM, 2011.

Viola, P. and Jones, M.J. Robust real-time face detection.
IJCV, 57(2):137–154, 2004.

Wang, J. and Saligrama, V. Local supervised learning
through space partitioning. In NIPS, pp. 91–99, 2012.

Weinberger, K.Q., Dasgupta, A., Langford, J., Smola, A.,
and Attenberg, J. Feature hashing for large scale multi-
task learning. In ICML, pp. 1113–1120, 2009.

Xiao, Jianxiong, Hays, James, Ehinger, Krista A, Oliva,
Aude, and Torralba, Antonio. Sun database: Large-
scale scene recognition from abbey to zoo. In CVPR,
pp. 3485–3492. IEEE, 2010.

Xu, Z., Weinberger, K.Q., and Chapelle, O. The greedy
miser: Learning under test-time budgets. In ICML, pp.
1175–1182, 2012.

Xu, Zhixiang, Kusner, Matt J., Weinberger, Kilian Q., and
Chen, Minmin. Cost-sensitive tree of classifiers. In Das-
gupta, Sanjoy and McAllester, David (eds.), ICML ’13,
pp. to appear, 2013.

Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., and
Sun, G. A general boosting method and its application
to learning ranking functions for web search. In NIPS,
pp. 1697–1704. Cambridge, MA, 2008.

